Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros











Intervalo de ano de publicação
2.
Glycoconj J ; 40(1): 47-67, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36522582

RESUMO

Glioblastoma multiforme (GBM) is the most aggressive type of glioma, displaying atypical glycosylation pattern that may modulate signaling pathways involved in tumorigenesis. Lectins are glycan binding proteins with antitumor properties. The present study was designed to evaluate the antitumor capacity of the Dioclea reflexa lectin (DrfL) on glioma cell cultures. Our results demonstrated that DrfL induced morphological changes and cytotoxic effects in glioma cell cultures of C6, U-87MG and GBM1 cell lines. The action of DrfL was dependent upon interaction with glycans, and required a carbohydrate recognition domain (CRD), and the cytotoxic effect was apparently selective for tumor cells, not altering viability and morphology of primary astrocytes. DrfL inhibited tumor cell migration, adhesion, proliferation and survival, and these effects were accompanied by activation of p38MAPK and JNK (p46/54), along with inhibition of Akt and ERK1/2. DrfL also upregulated pro-apoptotic (BNIP3 and PUMA) and autophagic proteins (Atg5 and LC3 cleavage) in GBM cells. Noteworthy, inhibition of autophagy and caspase-8 were both able to attenuate cell death in GBM cells treated with DrfL. Our results indicate that DrfL cytotoxicity against GBM involves modulation of cell pathways, including MAPKs and Akt, which are associated with autophagy and caspase-8 dependent cell death.


Assuntos
Antineoplásicos , Morte Celular Autofágica , Dioclea , Glioma , Humanos , Dioclea/química , Caspase 8/metabolismo , Caspase 8/farmacologia , Caspase 8/uso terapêutico , Lectinas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/farmacologia , Proteínas Proto-Oncogênicas c-akt/uso terapêutico , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Glioma/metabolismo , Glioma/patologia , Movimento Celular , Autofagia , Antineoplásicos/farmacologia , Proliferação de Células , Apoptose
3.
Molecules ; 27(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36296679

RESUMO

A glioblastoma (GBM) is a highly malignant primary brain tumor with a poor prognosis because of its invasiveness and high resistance to current therapies. In GBMs, abnormal glycosylation patterns are associated with malignancy, which allows for the use of lectins as tools for recognition and therapy. More specifically, lectins can interact with glycan structures found on the malignant cell surface. In this context, the present work aimed to investigate the antiglioma potential of ConGF, a lectin purified from Canavalia grandiflora seeds, against C6 cells. The treatment of C6 cells with ConGF impaired the mitochondrial transmembrane potential, reduced cell viability, and induced morphological changes. ConGF also induced massive autophagy, as evaluated by acridine orange (AO) staining and LC3AB-II expression, but without prominent propidium iodide (PI) labeling. The mechanism of action appears to involve the carbohydrate-binding capacity of ConGF, and in silico studies suggested that the lectin can interact with the glycan structures of matrix metalloproteinase 1 (MMP1), a prominent protein found in malignant cells, likely explaining the observed effects.


Assuntos
Canavalia , Fabaceae , Canavalia/química , Fabaceae/química , Lectinas/química , Metaloproteinase 1 da Matriz , Propídio , Laranja de Acridina , Lectinas de Plantas/química , Sementes/química , Carboidratos/análise
4.
Mol Biol Rep ; 49(9): 8847-8857, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35882745

RESUMO

OBJECTIVE: To investigate the effect and mechanisms of Andira anthelmia lectin in rat models of acute inflammation. MATERIAL: AAL anti-inflammatory activity was evaluated in Wistar rat models of paw edema and peritonitis. METHODS: AAL (0.01-1 mg/kg i.v.) was injected 30 min before stimulation with carrageenan and with initial and late phase inflammatory mediators into the animals paw or peritoneum for evaluation of cell migration (optical and intravital microscopy), paw edema (plethysmometry and histopathology); hyperalgesia (analgesimetry). RESULTS: AAL inhibited leukocyte migration induced by carrageenan, mainly neutrophils to the peritoneal fluid, decreasing leukocyte adhesion. In the peritoneal fluid, AAL reduced the gene expression of TNF-α and cyclooxygenase, as well the levels of PGE2. AAL inhibited the paw edema induced by carrageenan, serotonin, histamine, TNF-α, PLA2 and PGE2, but not by L-arginine. In this model, AAL also inhibited mechanical hypernociception induced by TNF-α, PGE2, db-cAMP and capsaicin, and the activity of myeloperoxidase in the paw tissues. CONCLUSION: AAL presents anti-inflammatory effect in acute models of rat inflammation involving the participation of prostaglandins, TNF-α and lectin domain.


Assuntos
Fabaceae , Fator de Necrose Tumoral alfa , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Carragenina , Dinoprostona/metabolismo , Edema/induzido quimicamente , Edema/tratamento farmacológico , Edema/patologia , Fabaceae/metabolismo , Inflamação/patologia , Lectinas , Prostaglandinas , Ratos , Ratos Wistar
5.
Glycoconj J ; 39(5): 599-608, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35239112

RESUMO

Lectins isolated from Canavalia ensiformis (ConA) and Canavalia brasiliensis (ConBr) are promising molecules to prevent cell death. Acute pancreatitis, characterized by acinar cell necrosis and inflammation, presents significant morbidity and mortality. This study has investigated the effects of ConA and ConBr in experimental acute pancreatitis and pancreatic acinar cell death induced by bile acid. Pancreatitis was induced by retrograde pancreatic ductal injection of 3% sodium taurocholate (Na-TC) in male Swiss mice. ConA or ConBr (0.1, 1 or 10 mg/kg) were intravenously applied to mice 1 h and 12 h after induction. After 24 h, the severity of pancreatitis was evaluated by serum amylase and lipase, histopathological changes and myeloperoxidase assay. Pancreatic acinar cells were incubated with ConA (200 µg/ml) or ConBr (200 µg/ml) and taurolithocholic acid 3-sulfate (TLCS; 500 µM). Necrosis and changes in mitochondrial membrane potential (ΔÑ°m) were detected by fluorescence confocal microscopy. Treatment (post-insult) with ConA and ConBr decreased pancreatic damage caused by retrograde injection of Na-TC in mice, reducing pancreatic neutrophil infiltration, edema and necrosis. In addition, ConA and ConBr decreased pancreatic acinar cell necrosis and depolarization of ΔÑ°m caused by TLCS. The inhibition of necrosis was prevented by the lectin domain blockade. In conclusion, ConA and ConBr markedly inhibited in vitro and in vivo damage, effects partly dependent on the interaction with mannose residues on acinar cells. These data support the potential application of these proteins for treatment of acute pancreatitis.


Assuntos
Canavalia , Pancreatite , Doença Aguda , Animais , Anti-Inflamatórios , Canavalia/química , Lectinas/farmacologia , Masculino , Camundongos , Necrose/tratamento farmacológico , Pancreatite/induzido quimicamente , Pancreatite/tratamento farmacológico , Lectinas de Plantas/química , Sementes/química
6.
J Biomol Struct Dyn ; 40(15): 6817-6830, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-33616012

RESUMO

Lectins are a class of proteins or glycoproteins capable of recognizing and interacting with carbohydrates in a specific and reversible manner. Owing to this property, these proteins can interact with glycoconjugates present on the cell surface, making it possible to decipher the glycocode, as well as elicit biological effects, such as inflammation and vasorelaxation. Here, we report a structural and biological study of the mannose/glucose-specific lectin from Dioclea lasiophylla seeds, DlyL. The study aimed to evaluate in detail the interaction of DlyL with Xman and high-mannose N-glycans (MAN3, MAN5 and MAN9) by molecular dynamics (MD) and the resultant in vitro effect on vasorelaxation using rat aortic rings. In silico analysis of molecular docking was performed to obtain the initial coordinates of the DlyL complexes with the carbohydrates to apply as inputs in MD simulations. The MD trajectories demonstrated the stability of DlyL over time as well as different profiles of interaction with Xman and N-glycans. Furthermore, aortic rings assays demonstrated that the lectin could relax pre-contracted aortic rings with the participation of the carbohydrate recognition domain (CRD) and nitric oxide (NO) when endothelial tissue is preserved. These results confirm the ability of DlyL to interact with high-mannose N-glycans with its expanded CRD, supporting the hypothesis that DlyL vasorelaxant activity occurs primarily through its interaction with cell surface glycosylated receptors.Communicated by Ramaswamy H. Sarma.


Assuntos
Dioclea , Animais , Carboidratos/química , Dioclea/química , Dioclea/metabolismo , Lectinas , Manose/química , Simulação de Acoplamento Molecular , Lectinas de Plantas/análise , Lectinas de Plantas/química , Lectinas de Plantas/farmacologia , Polissacarídeos/farmacologia , Ratos , Sementes/química , Sementes/metabolismo , Vasodilatadores/análise , Vasodilatadores/química , Vasodilatadores/farmacologia
7.
J Mol Recognit ; 34(10): e2922, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34132435

RESUMO

Using a rat model of peritonitis, we herein report the inflammatory effect induced by the lectin isolated from Vatairea guianensis (VGL) seeds in the context of interactions between VGL and both toll-like receptor 4 (TLR4) and tumor necrosis factor receptor 1 (TNFR1). Peritoneal macrophages were stimulated with VGL for dose-dependent gene expression and release of TNF-α. In vivo results showed that VGL (1 mg/kg; intraperitoneal) induced peritonitis in female Wistar rats. Leukocyte migration, macrophage activation, and protein leakage were measured 3 and 6 hours after induction. In vitro, peritoneal macrophages were stimulated with VGL for gene expression and TNF-α dosage (mean ± SEM (n = 6), analysis of variance, and Bonferroni's test (P < .05)). In silico, VGL structure was applied in molecular docking with representative glycans. It was found that (a) VGL increases vascular permeability and stimulates leukocyte migration, both rolling and adhesion; (b) lectin-induced neutrophil migration occurs via macrophage stimulation, both in vitro and in vivo; (c) lectin interacts with TLR4 and TNFR1; and (d) stimulates TNF-α gene expression (RT-PCR) and release from peritoneal macrophages. Thus, upon lectin-glycan binding on the cell surface, our results suggest that VGL induces an acute inflammatory response, in turn activating the release of peritoneal macrophages via TNF-α and TLR and/or TNFR receptor pathways.


Assuntos
Fabaceae/química , Glicoconjugados/metabolismo , Macrófagos Peritoneais/efeitos dos fármacos , Lectinas de Plantas/farmacologia , Animais , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Glicoconjugados/química , Leucócitos/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Peritonite/induzido quimicamente , Peritonite/metabolismo , Peritonite/patologia , Lectinas de Plantas/química , Lectinas de Plantas/metabolismo , Ratos Wistar , Receptores Tipo I de Fatores de Necrose Tumoral/química , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
8.
Inflammopharmacology ; 28(6): 1623-1631, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32572724

RESUMO

OBJECTIVE AND DESIGN: The involvement of nitric oxide pathway in the antinociceptive activity of Lonchocarpus araripensis lectin (LAL) was investigated in the model of carragenan-induced hypernociception. METHODS: Swiss mice received LAL (0.01-10 mg/kg; i.v.) 30 min before s.c. injection of carragenan in the paws. For the involvement of nociceptive pathways, animals were previously treated with the blockers: NOS (L-NAME, aminoguanidine, 7-nitroindazole); soluble guanylyl cyclase (ODQ); channels of ATP-dependent K+ (glibenclamide); L-type Ca2+ (nifedipine), or Ca2+-dependent Cl- (niflumic acid). Participation of lectin domain was evaluated by injection of LAL associated with N-acetyl-glucosamine (GlcNAc). nNOS gene relative expression was evaluated in the paw tissues and nNOS immunostaining in dorsal root ganglia. RESULTS: LAL at all doses inhibited carrageenan-induced hypernociception (4.12 ± 0.58 g), being maximal at 10 mg/kg (3 h: 59%), and reversed by GlcNAc. At this time, LAL effect was reversed by nifedipine (39%), niflumic acid (59%), L-NAME (59%), 7-nitroindazole (44%), ODQ (45%), and glibenclamide (34%), but was unaltered by aminoguanidine. LAL increased (95%) nNOS gene expression in mice paw tissues, but not its immunoexpression in the dorsal root ganglia. CONCLUSION: The antinociceptive effect of Lonchocarpus araripensis lectin involves activation of the L-arginine/NO/GMPc/K+ATP pathway.


Assuntos
Analgésicos/farmacologia , Arginina/metabolismo , GMP Cíclico/metabolismo , Fabaceae/química , Canais KATP/metabolismo , Lectinas/farmacologia , Óxido Nítrico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , Carragenina/farmacologia , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Óxido Nítrico Sintase Tipo I/metabolismo
9.
Inflammation ; 43(4): 1446-1454, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32212035

RESUMO

This study investigated the effects of the alga lectin Hypnea cervicornis agglutinin (HCA) on rat zymosan-induced arthritis (ZyA). Zymosan (50-500 µg/25 µL) or sterile saline (Sham) was injected into the tibio-tarsal joint of female Wistar rats (180-200 g). Arthritic animals received morphine (4 mg/kg, intraperitoneal), indomethacin (5 mg/kg, intraperitoneal), or 2% lidocaine (100 µL, subcutaneous). HCA (0.3-3 mg/kg) was administered by intravenous route 30 min before or 2 h after zymosan. 1H-[1,2,4]oxadiazolo[4,3-a]-quinoxalin-1-one (ODQ, 4 µg, intra-articular) was given 30 min prior HCA. Hypernociception was measured every hour until 6 h, time in which animals were sacrificed for evaluation of leukocytes of the intra articular fluid and gene expression of TNF-α, IL-1, IL-10, and iNOS in the joint tissues using PCR techniques. Hypernociception was responsive to morphine and indomethacin, and its threshold was not altered by lidocaine. The post-treatment of HCA reduced both hypernociception and leukocyte influx. This antinociceptive effect was abolished either by ODQ and glibenclamide. HCA also reduced gene expression of iNOS and TNF-α. In conclusion, the antinociceptive effect of HCA in ZyA involves cyclic GMP signalization and selective modulation of cytokine expression.


Assuntos
Artrite/tratamento farmacológico , GMP Cíclico/metabolismo , Citocinas/biossíntese , Lectinas/uso terapêutico , Rodófitas , Zimosan/toxicidade , Analgésicos/isolamento & purificação , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Artrite/induzido quimicamente , Artrite/metabolismo , Expressão Gênica , Lectinas/isolamento & purificação , Lectinas/farmacologia , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
10.
J Mol Model ; 26(2): 22, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31912427

RESUMO

The Tn antigen is an epitope containing N-acetyl-D-galactosamine present in the extracellular matrix of some carcinoma cells in humans, and it is often used as a biomarker. Lectins are proteins capable of binding to carbohydrates and can be used as a molecular tool to recognize antigens and to differentiate cancer cells from normal cells. In this context, the present work aimed to characterize the interaction of Vatairea guianensis seed lectin with N-acetyl-D-galactosamine and the Tn antigen by molecular dynamics and molecular mechanics/Poisson-Boltzmann solvent-accessible surface area analysis. This study revealed new interacting residues not previously identified in static analysis of the three-dimensional structures of Vatairea lectins, as well as the configuration taken by the carbohydrate recognition domain, as it interacts with each ligand. During the molecular dynamics simulations, Vatairea guianensis lectin was able to bind stably to Tn antigen, which, as seen previously for other lectins, enables its use in cancer research, diagnosis, and therapy. This work further demonstrates the efficiency of bioinformatics in lectinology.


Assuntos
Fabaceae/química , Simulação de Dinâmica Molecular , Lectinas de Plantas/química , Humanos , Neoplasias , Domínios Proteicos
11.
Curr Protein Pept Sci ; 20(6): 600-613, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30608039

RESUMO

Lectins are defined as proteins or glycoproteins capable of specific and reversible binding to carbohydrates. Inside this group of proteins, the most well-studied lectins belong to the Leguminosae family, and inside this family, the Diocleinae subtribe includes the most characterized lectin Concanavalin A (ConA), as well as ConBr, the lectin from Canavalia brasiliensis, the subject of this review. Since 1979, several studies have been published in the literature regarding this lectin, from its isolation and characterization to its several biological activities. This year, 2019, will mark 40 years since researchers have begun to study ConBr and 100 years since the discovery of ConA, making 2019 a momentous year for lectinology. Owing to the abundance of studies involving ConBr, this review will focus on ConBr's purification, physicochemical properties, functional and structural analyses, biological activities and biotechnological applications. This will give researchers a broad glimpse into the potential of this lectin, as well as it characteristics, as we look ahead to its expanding applications in glycomics and biotechnology.


Assuntos
Canavalia/química , Lectinas de Plantas/isolamento & purificação , Sementes/química , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Concanavalina A/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Modelos Moleculares , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Lectinas de Plantas/farmacologia , Ligação Proteica , Conformação Proteica
12.
Int J Biol Macromol ; 125: 53-60, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30500503

RESUMO

Lonchocarpus campestris (tribe Dalbergieae) possess a mannose biding lectin (LCaL) purified by ion exchange chromatography on DEAE-Sephacel, HiTrap DEAE FF and TSKgel engaged in AKTA-HPLC system. LCaL agglutinates trypsinized rabbit erythrocytes and its activity was maintained after incubation in a wide range of temperature (4-100 °C) and pH (4-9). The lectin had its apparent molecular weight evaluated by size-exclusion chromatography and SDS-PAGE and presented a profile of 10 kDa and 25 kDa in denaturing and native conditions, respectively. LCaL injected by intravenous route in mice showed antinociceptive activity in the behavioral tests of Formalin and Writhing. In the formalin test LCaL inhibited the licking time by 37% in the neurogenic phase and by 73% in the inflammatory phase. In the acetic acid-induced writhing test LCaL showed inhibitory effect at 0.1 mg/kg (72%), 1 mg/kg (74%) and 10 mg/kg (70%). The lectin also inhibited the increase in vascular permeability at 10 mg/kg and leukocyte migration at 0.1, 1 and 10 mg/kg concentrations. Additionally, LCaL inhibited paw edema (mainly from 1 to 3 h by 46%) and hyperalgesia (1 h: 82%; 3 h: 63%) induced by carrageenan. In conclusion, LCaL presents an antinociceptive action mainly via inhibition of inflammation.


Assuntos
Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Fabaceae/química , Lectinas/isolamento & purificação , Nociceptividade/efeitos dos fármacos , Sementes/química , Animais , Hemaglutinação , Lectinas/química , Masculino , Camundongos , Peso Molecular
13.
J Mol Model ; 24(9): 251, 2018 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-30145634

RESUMO

The Arachis genus belongs to the Dalbergieae tribe, a group of plants that show promising potential novel lectins. Three lectins of the well-known Arachis hypogaea have already been purified, while lectins from related species are still unknown. Genomes of two closely related species, Arachis duranensis and Arachis ipaensis, were recently sequenced. Therefore, this study aimed to establish the three-dimensional structure of Arachis duranensis lectin (ADL) and Arachis ipaensis lectin (AIL) by homology modeling, test their activity against mannosides, and perform molecular dynamics (MD) simulations on these two proteins, both unligated and interacting with mannose or α-methyl-D-mannoside. The fold obtained for the molecular models agrees with data obtained from previous leguminous lectins, showing a conserved jelly roll motif. Docking scores indicate that these lectins have different theoretical binding energy with monosaccharides, disaccharides, and high-mannose glycans. MD simulations revealed that these proteins are α-methyl-D-mannoside-specific, having less stable interactions with mannose. This study thus serves as a guide for further research on lectins of the Arachis genus.

14.
Int J Biol Macromol ; 117: 124-133, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29802925

RESUMO

Lectins represent a class of proteins or glycoproteins capable of reversibly binding to carbohydrates. Seed lectins from the Dalbergieae tribe (Leguminosae) have structural variability, carbohydrate specificity, and biological effects, such as inflammation, vasorelaxation and cancer antigen binding. To comprehensively address these factors, the present work aimed to establish and characterize the three-dimensional structure of Centrolobium microchaete lectin (CML) by homology modeling, investigate protein-carbohydrate interactions and evaluate its inflammatory effect on mice. Molecular docking was performed to analyze interactions of the lectin with monosaccharides, disaccharides and N-glycans. Two dimannosides, methyl mannose-1,3-α-D-mannose (MDM) and mannose-1,3-α-D-mannose (M13), were used in molecular dynamics (MD) simulations to study the behavior of the carbohydrate-recognition domain (CRD) over time. Results showed an expanded domain within which hydrophobic interactions with the methyl group in the MDM molecule were established, thus revealing novel interactions for mannose-specific Dalbergieae lectins. To examine its biological activities, CML was purified in a single step by affinity chromatography on Sepharose-mannose matrix. The lectin demonstrated inflammatory response in the paw edema model and stimulated leukocyte migration to the animal peritoneal cavities, an effect elicited by CRD. For the first time, this work reports the molecular dynamics of a lectin from the Dalbergieae tribe.


Assuntos
Fabaceae/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Lectinas de Plantas/química , Sementes/química , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/isolamento & purificação , Anti-Inflamatórios não Esteroides/farmacologia , Sítios de Ligação , Modelos Animais de Doenças , Edema/tratamento farmacológico , Edema/etiologia , Edema/patologia , Metais/química , Camundongos , Lectinas de Plantas/isolamento & purificação , Lectinas de Plantas/farmacologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Relação Estrutura-Atividade
16.
J. Health Biol. Sci. (Online) ; 5(4): 306-310, out-dez/2017. ilus
Artigo em Inglês | LILACS | ID: biblio-868025

RESUMO

Background: The vasorelaxant effect of lectins from leguminous plants (Diocleinae subtribe) is well described. However, this effect has been little explored for lectins isolated from Dalbergieae tribe, except for that of Vatairea guianensis, that induces vasorelaxation involving nitric oxide and the lectin domain. Objective: To evaluate the vasorelaxant effect of a lectin isolated from Lonchocarpus araripensis (LAL), Dalbergieae tribe, and the involvement of the lectin domain and endothelium derived relaxing factors. Methods: Aortic rings of Wistar rats (250 - 300 g) were mounted in organ bath and mantained in physiological conditions (CEUA No. 10130208-8/40). LAL (0.1­100 µg/ml) was added to phenylephrine (0.1 µM)-contracted tissues with either endothelium intact or denuded. In order to investigate the mechanisms of LAL relaxation, inhibitors of NOS (L-NAME: 100 µM), cyclooxygenase (indomethacin: 10 µM), or potassium channels (TEA: 5 mM) were added to endothelized tissues 30 min before contraction. The involvement of lectin domain was assessed by previous incubation of LAL (30 µg/ml) with GlcNAc (0.1 M). Results: LAL (0.1-100 µg/ml) induced relaxation only in endothelized aorta, being maximal at 100 µg/ml (62.57 ± 7.8%). The relaxant effect induced by LAL at 30 µg/ml (52.49 ± 10.32%) was abolished by previous incubation with GlcNAc. LAL relaxant effect (IC50 9.75 ± 7.1) was partially reversed by indomethacin (IC50 LAL + indomethacin: 30.47 ± 10.93) and was abolished by L-NAME or TEA. Conclusion: LAL exhibits vasorelaxant activity in contracted endothelized aorta of rats, involving the lectin domain, muscarinic receptor of acetylcholine and endothelial derived relaxing factors. (AU)


Introdução: O efeito vasorrelaxante de lectinas de plantas leguminosas (Subtribo Diocleinae) já é bem descrito, embora pouco explorado para lectinas isoladas da tribo Dalbergieae, com exceção da lectina de Vatairea guianensis, que induz relaxamento com envolvimento de óxido nítrico e do domínio lectínico. Objetivo: Avaliar o efeito vasorrelaxante da lectina isolada de Lonchocarpus araripensis (LAL), tribo Dalbergieae, e o envolvimento do domínio lectínico e de fatores relaxantes derivados do endotélio (EDRF). Métodos: Anéis de aorta de ratos Wistar (250-300 g) foram montados em banho de órgãos em condições fisiológicas (Tyrode, 37 ° C, 95% de O2 e 5% de CO2, pH = 7,4) (CEUA No. 10130208-8/40). LAL (0,1-100 µg/ml) foi adicionada a tecidos pré-contraídos com fenilefrina (0,1 µM) com ou sem endotélio. Para investigar os mecanismos de relaxamento, foram adicionados inibidores de NOS (L-NAME: 100 µM), guanilato ciclase (ODQ: 10 µM), receptor muscarínico (atropina: 1 µM), ciclooxigenase (indometacina: 10 µM) ou canais de potássio (TEA: 5 mM) aos tecidos endotelizados 30 minutos antes da contração. O envolvimento do domínio lectínico foi avaliado por incubação prévia da LAL (30 µg/ml) com GlcNAc (0,1 M). Resultados: LAL (0,1-100 µg/ml) relaxou apenas anéis de aorta endotelizadas, com efeito máximo na dose de 100 µg/ml (62,57 ± 7,8%). O efeito relaxante da LAL a 30 µg/ml (52,49 ± 10,32%) foi abolido por incubação prévia com GlcNAc, atropina ou ODQ. O relaxamento da LAL (IC50 9,75 ± 7,1) a 10, 30 e 100 µg/ml foi parcialmente revertido por indometacina (IC50 LAL + indometacina: 30,47 ± 10,93) e abolido por L-NAME e TEA. Conclusão: A LAL exibe atividade vasorrelaxante em aorta endotelizada de ratos, no estado contraído, envolvendo o domínio lectínico, receptor muscarínico e fatores relaxantes derivados do endotélio. (AU)


Assuntos
Lectinas de Plantas
17.
Int J Biochem Cell Biol ; 92: 79-89, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28939357

RESUMO

Lectins are multidomain proteins that specifically recognize various carbohydrates. The structural characterization of these molecules is crucial in understanding their function and activity in systems and organisms. Most cancer cells exhibit changes in glycosylation patterns, and lectins may be able to recognize these changes. In this work, Dioclea lasiocarpa seed lectin (DLL) was structurally characterized. The lectin presented a high degree of similarity with other lectins isolated from legumes, presenting a jelly roll motif and a metal-binding site stabilizing the carbohydrate-recognition domain. DLL demonstrated differential interactions with carbohydrates, depending on type of glycosidic linkage present in ligands. As observed by the reduction of cell viability in C6 cells, DLL showed strong antiglioma activity by mechanisms involving activation of caspase 3.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Dioclea/química , Glioma/patologia , Lectinas de Plantas/química , Lectinas de Plantas/farmacologia , Animais , Antineoplásicos/metabolismo , Metabolismo dos Carboidratos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Simulação de Acoplamento Molecular , Lectinas de Plantas/metabolismo , Conformação Proteica , Ratos , Sementes/química
18.
Arch Biochem Biophys ; 630: 27-37, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28754321

RESUMO

The Pisum arvense lectin (PAL), a legume protein belonging to the Vicieae tribe, is capable of specific recognition of mannose, glucose and its derivatives without altering its structure. In this work, the three-dimensional structure of PAL was determined by X-ray crystallography and studied in detail by a combination of molecular docking and molecular dynamics (MD). Crystals belonging to monoclinic space group P21 were grown by the vapor diffusion method at 293 K. The structure was solved at 2.16 Å and was similar to that of other Vicieae lectins. The structure presented Rfactor and Rfree of 17.04% and 22.08%, respectively, with all acceptable geometric parameters. Molecular docking was performed to analyze interactions of the lectin with monosaccharides, disaccharides and high-mannose N-glycans. PAL demonstrated different affinities on carbohydrates, depending on bond orientation and glycosidic linkage present in ligands. Furthermore, the lectin interacted with representative N-glycans in a manner consistent with the biological effects described for Vicieae lectins. Carbohydrate-recognition domain (CRD) in-depth analysis was performed by MD, describing the behavior of CRD residues in complex with ligand, stability, flexibility of the protein over time, CRD volume and topology. This is a first report of its kind for a lectin of the Vicieae tribe.


Assuntos
Fabaceae/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Lectinas de Plantas/química , Polissacarídeos/química , Cristalografia por Raios X
19.
Int J Biol Macromol ; 102: 323-330, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28380332

RESUMO

The lectin from Platypodium elegans seeds (PELa) was purified by affinity chromatography in a mannose-agarose column. The lectin agglutinated rabbit erythrocytes and the agglutinating effect was inhibited by previous incubation with the glycoprotein fetuin, along with N-acetyl-d-glucosamine, D-mannose and its derivatives. The lectin maintained complete activity in temperatures ranging from 40 to 60°C and pH values ranging from 9 to 10. As a glycoprotein, PELa has a carbohydrate content of 2.2%, and its activity requires divalent cations such as Ca2+ and Mn2+. Based on SDS-PAGE, PELa displays a profile similar to that of other Dalbergieae lectins with the main chain of molecular mass around 30kDa and two subunits of 19kDa and 10 kDa each. Two-dimensional (2D) electrophoresis revealed the presence of isoforms with different isoelectric points, and high-performance size exclusion chromatography (HPSEC) was performed to confirm the purity of the sample. The lectin was immobilized in CNBr-activated Sepharose 4B and successfully captured fetuin in solution, demonstrating that this lectin remains active and capable of binding carbohydrates. PELa showed effects different from those of its recombinant form in both pro- and anti-inflammatory tests.


Assuntos
Edema/induzido quimicamente , Fabaceae/química , Proteínas Imobilizadas/farmacologia , Lectinas de Plantas/farmacologia , Proteínas Recombinantes/farmacologia , Sementes/química , Sefarose/química , Animais , Eritrócitos/efeitos dos fármacos , Eritrócitos/imunologia , Hemaglutinação/efeitos dos fármacos , Proteínas Imobilizadas/química , Masculino , Lectinas de Plantas/química , Coelhos , Ratos , Proteínas Recombinantes/química
20.
Biochimie ; 135: 126-136, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28196677

RESUMO

Lectins are proteins, or glycoproteins, capable of reversibly binding to specific mono- or oligosaccharides via a noncatalytic domain. The Diocleinae subtribe presents lectins with high structural similarity, but different effects based on biological activity assays. This variability results from small structural differences. Therefore, in this context, the present study aimed to perform a structural analysis of the lectin from Dioclea lasiophylla Mart. ex Benth seeds (DlyL) and evaluate its inflammatory effect. To accomplish this, DlyL was purified in a single step by affinity chromatography on Sephadex® G-50 matrix. DlyL primary structure was determined through a combination of tandem mass spectrometry and DNA sequencing. DlyL showed high similarity with other species from the same genus. Its theoretical three-dimensional structure was predicted by homology modelling, and the protein was subjected to ligand screening with monosaccharides, oligosaccharides and complex N-glycans by molecular docking. Stability and binding of the lectin with α-methyl-d-mannoside were assessed by molecular dynamics. DlyL showed acute inflammatory response with hypernociceptive effect in the paw edema model, possibly by interaction with glycans present at the cell surface.


Assuntos
Lectinas/química , Simulação de Acoplamento Molecular , Dioclea/química , Simulação de Dinâmica Molecular , Monossacarídeos/química , Oligossacarídeos/química , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA