Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 11(1): 10648, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34017014

RESUMO

Sea surface temperature (SST) anomalies caused by a warm core eddy (WCE) in the Southwestern Atlantic Ocean (SWA) rendered a crucial influence on modifying the marine atmospheric boundary layer (MABL). During the first cruise to support the Antarctic Modeling and Observation System (ATMOS) project, a WCE that was shed from the Brazil Current was sampled. Apart from traditional meteorological measurements, we used the Eddy Covariance method to directly measure the ocean-atmosphere sensible heat, latent heat, momentum, and carbon dioxide (CO2) fluxes. The mechanisms of pressure adjustment and vertical mixing that can make the MABL unstable were both identified. The WCE also acted to increase the surface winds and heat fluxes from the ocean to the atmosphere. Oceanic regions at middle and high latitudes are expected to absorb atmospheric CO2, and are thereby considered as sinks, due to their cold waters. Instead, the presence of this WCE in midlatitudes, surrounded by predominantly cold waters, caused the ocean to locally act as a CO2 source. The contribution to the atmosphere was estimated as 0.3 ± 0.04 mmol m-2 day-1, averaged over the sampling period. The CO2 transfer velocity coefficient (K) was determined using a quadratic fit and showed an adequate representation of ocean-atmosphere fluxes. The ocean-atmosphere CO2, momentum, and heat fluxes were each closely correlated with the SST. The increase of SST inside the WCE clearly resulted in larger magnitudes of all of the ocean-atmosphere fluxes studied here. This study adds to our understanding of how oceanic mesoscale structures, such as this WCE, affect the overlying atmosphere.

3.
An Acad Bras Cienc ; 93(1): e20191113, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33787752

RESUMO

This work is taken up to evaluate the relationship between the thermal comfort of spectators and athletes and the prevailing meteorological conditions during Rio 2016 Olympic Games. Empirical and physiological thermal comfort indices are calculated from data collected from an automatic weather station installed near the Olympic Stadium and interviews with the spectators. The study period was marked by a gradual rise in air temperature and by the occurrence of two significant weather events associated with wind gusts, which caused disturbances in some areas of the competitions. ET and NET were below the air temperature, indicating that both humidity and wind contributed to the reduction of the human-biometeorological indices. Majority of the interviewed persons reported comfortable sensation and weather conditions. These perceptions corroborate results of the thermal comfort indices calculated for these resting spectators. The comfort indices calculated for the athletes with high level of physical activity showed that PET estimated hotter thermal sensation those for the individuals at rest, indicating that the physical type of a person may strongly influence the thermal sensation and comfort during intense physical activity. Increasing trend observed in all the indices of human thermal comfort during the period of study shows consistency among them.


Assuntos
Esportes , Sensação Térmica , Humanos , Umidade , Temperatura , Tempo (Meteorologia)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA