Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Environ Sci Health B ; 57(11): 865-875, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36205187

RESUMO

Dicamba is a post-emergence herbicide commonly used to control broadleaves in cereal crops. However, a portion of the herbicide might reach soil surface, and many factors could affect its dynamics and effects. The objective of this research was to evaluate the dynamics of dicamba applied to the soil, to the soil and covered with straw and over the straw, in addition, to evaluate the weed control in pre-emergence. Two field experiments at different locations were conducted with dicamba. To quantify dicamba in the soil a LC-MS/MS system was used. In both experiments, rainfall and straw played a key role in dicamba soil dynamics and weed control. Dicamba in the soil was affected by presence of straw and accumulated rainfall after the application. Higher concentrations (254-432 ng g soil-1) in the soil 0-10 cm layers and greater leaching potential were found for the application in the soil compared to over the straw. The maximum concentration of dicamba (101.6-226 ng g soil-1) was found after 10 mm of rainfall for dicamba application over the straw. Around 60-70% of weeds were controlled with concentrations greater than 20 ng/g soil-1, in the presence or absence of straw.


Assuntos
Herbicidas , Herbicidas/análise , Dicamba/farmacologia , Zea mays , Controle de Plantas Daninhas , Solo , Brasil , Cromatografia Líquida , Espectrometria de Massas em Tandem
2.
Plants (Basel) ; 10(4)2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33921574

RESUMO

(1) Background: The aim of this study was to explore whether supplementary magnesium (Mg) foliar fertilization to soybean and maize crops established in a soil without Mg limitation can improve the gas exchange and Rubisco activity, as well as improve antioxidant metabolism, converting higher plant metabolism into grain yield. (2) Methods: Here, we tested foliar Mg supplementation in soybean followed by maize. Nutritional status of plants, photosynthesis, PEPcase and Rubisco activity, sugar concentration on leaves, oxidative stress, antioxidant metabolism, and finally the crops grain yields were determined. (3) Results: Our results demonstrated that foliar Mg supplementation increased the net photosynthetic rate and stomatal conductance, and reduced the sub-stomatal CO2 concentration and leaf transpiration by measuring in light-saturated conditions. The improvement in photosynthesis (gas exchange and Rubisco activity) lead to an increase in the concentration of sugar in the leaves before grain filling. In addition, we also confirmed that foliar Mg fertilization can improve anti-oxidant metabolism, thereby reducing the environmental stress that plants face during their crop cycle in tropical field conditions. (4) Conclusions: Our research brings the new glimpse of foliar Mg fertilization as a strategy to increase the metabolism of crops, resulting in increased grain yields. This type of biological strategy could be encouraged for wide utilization in cropping systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA