Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 195(10): 1240, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37737924

RESUMO

The improvement of water management requires monitoring techniques that accurately evaluate water quality status and detect the effects of land use changes on water chemistry. This study aimed to evaluate how multivariate statistical methods and water quality indices can be applied together to evaluate the processes controlling water chemical composition and the overall water quality status of a tropical watershed. Thirty-four water samples were collected in the Formoso River basin, located on the border of the Amazon Forest. Water parameters were measured in situ using a multiparameter and in the lab using spectroscopic and volumetric techniques. The water quality dataset was interpreted through principal component analysis, multivariate linear regression, and water quality indices. Statistical methods allowed us to identify the sources and geochemical processes controlling water quality chemistry, which were carbonate dissolution, runoff/erosion, nutrient input due to anthropogenic activities, and redox reactions in flooded zones. They were also used to create linear functions to evaluate the effects of land use changes on the geochemical processes controlling water chemistry. Conversely, the water quality indices provide information about the overall condition of the water. The Weight-Arithmetic Quality Index correctly evaluates water suitability for its multiple uses, according to the Brazilian guidelines. Conversely, the Ontario Water Quality Index is not suitable to evaluate the water quality of tropical rivers, since the usual higher water temperature and the low oxygen contents associated with tropical environments result in biased water quality evaluations by this index.


Assuntos
Monitoramento Ambiental , Qualidade da Água , Efeitos Antropogênicos , Brasil , Inundações
2.
Mar Pollut Bull ; 190: 114848, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37027955

RESUMO

An old electroplating plant in Sepetiba Bay discharged metal-enriched wastes into the surrounding mangroves for 30 years (from the 1960s to 1990s), resulting in a hotspot zone of legacy sediments highly concentrated in toxic trace metals. This study applies Cu and Pb isotope systems to investigate the contributions of past punctual sources relative to emerging modern diffuse sources. The electroplating activity imprinted particular isotopic signatures (average δ65CuSRM-976: 0.4 ‰ and 206Pb/207Pb: 1.14) distinct from the natural baseline and urban fluvial sediments. The isotopic compositions of tidal flat sediments show intermediate isotope compositions reflecting the mixing of Cu and Pb from the hotspot zone and terrigenous materials carried by rivers. Oyster isotope fingerprints match legacy sediments, attesting that anthropogenic Cu and Pb are bioavailable to the biota. These findings confirm the interest in combining two or more metal isotope systems to discriminate between modern and past metal source emissions in coastal environments.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Cobre/análise , Metais Pesados/análise , Chumbo , Brasil , Galvanoplastia , Baías , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Isótopos/análise , Biota , Sedimentos Geológicos
3.
J Hazard Mater ; 448: 130828, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36731315

RESUMO

In 2019, the Brumadinho dam rupture released a massive amount of iron ore mining tailings into the Paraopeba River. Up to now, it remains a public health issue for the local and downstream populations. The present study aims to assess the behavior and fate of metal contamination following the disaster. Using new sampling strategies and up-to-date geochemistry tools, we show that the dissolved metal concentrations (< 0.22 µm cutoff filtration) remained low in the Paraopeba River. Although the tailings present high metal concentrations (Fe, Mn, Cd, and As), the high local background contents of metals and other previous anthropogenic contamination hamper tracing the sediment source based only on the geochemical signature. The Pb isotopic composition coupled with the metals enrichment factor of sediments and Suspended Particulate Matter (SPM) constitutes accurate proxies that trace the fate and dispersion of tailing particles downstream of the dam collapse. This approach shows that 1) The influence of the released tailing was restricted to the Paraopeba River and the Retiro Baixo reservoir, located upstream of the São Francisco River; 2) The tailings' contribution to particulate load ranged from 17 % to 88 % in the Paraopeba River; 3) Other regional anthropogenic activities also contribute to water and sediment contamination of the Paraopeba river.

4.
Environ Sci Pollut Res Int ; 29(28): 43072-43088, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35091935

RESUMO

The present study investigated metal and metalloid dynamics in the estuarine water of the Doce River (Brazil) after the collapse of an iron ore-processing tailing dam in 2015. Spectroscopic and isotopic techniques were applied to bring new insights into the effects of the dam failure on the dynamics and hazardousness of particulate and dissolved metal(loid) concentrations along the fluvial-estuarine continuum. Spectroscopic analysis showed that the suspended particulate matter (SPM) of the Doce River estuary consisted of a combination of soil-delivered particles and fine tailing mud particles with small amounts of coarse tailing mud Fe oxides (~150-µm width). Enrichment and contamination factors showed that the dam failure increased particulate Fe, Pb, Cd, and As, and dissolved Pb concentrations. Total concentrations of As (15 µg/L), Pb (30 µg/L), Cd (8 µg/L), and Cr (105 µg/L) increased up to values higher than quality and regulatory guidelines. Human health risk assessment showed that local communities are exposed to a potentially chronic Cr noncarcinogenic effects, although Cr high concentrations were not linked with the dam failure by this study. The particulate Pb isotope signatures reported herein (206/207Pb ratios of 1.214 ± 0.006 and 208/206Pb ratios of 2.025 ± 0.011) can be applied to constrain metal(loid) sources in the Doce River sediment plume and continental shelf. The river-ocean mixing zone caused abrupt changes metal(loid) partitioning (Zn, Pb, Cr, Cu, Cd, and As), controlling their fate in the estuary and the Brazilian southeast coastal.


Assuntos
Metais Pesados , Colapso Estrutural , Poluentes Químicos da Água , Brasil , Cádmio/análise , Monitoramento Ambiental/métodos , Estuários , Humanos , Ferro/análise , Chumbo/análise , Metais Pesados/análise , Rios/química , Poluentes Químicos da Água/análise
5.
Environ Pollut ; 226: 41-47, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28402837

RESUMO

The application of zinc (Zn) isotopes in bivalve tissues to identify zinc sources in estuaries was critically assessed. We determined the zinc isotope composition of mollusks (Crassostrea brasiliana and Perna perna) and suspended particulate matter (SPM) in a tropical estuary (Sepetiba Bay, Brazil) historically impacted by metallurgical activities. The zinc isotope systematics of the SPM was in line with mixing of zinc derived from fluvial material and from metallurgical activities. In contrast, source mixing alone cannot account for the isotope ratios observed in the bivalves, which are significantly lighter in the contaminated metallurgical zone (δ66ZnJMC = +0.49 ± 0.06‰, 2σ, n = 3) compared to sampling locations outside (δ66ZnJMC = +0.83 ± 0.10‰, 2σ, n = 22). This observation suggests that additional factors such as speciation, bioavailability and bioaccumulation pathways (via solution or particulate matter) influence the zinc isotope composition of bivalves.


Assuntos
Bivalves/metabolismo , Monitoramento Ambiental/métodos , Estuários , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Zinco/análise , Zinco/metabolismo , Animais , Brasil , Poluição Ambiental , Isótopos/metabolismo , Metalurgia , Material Particulado/metabolismo
6.
Rapid Commun Mass Spectrom ; 29(21): 2102-8, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26443413

RESUMO

RATIONALE: Although recent studies have investigated the Fe isotopic composition of dissolved, colloidal and particulate phases from continental and oceanic natural waters, few efforts have been made to evaluate whether water sample storage and the separation of different pore-size fractions through filtration can cause any change to the Fe isotopic compositions. The present study investigates the possible biases introduced by different water storage conditions on the dissolved Fe concentration and isotopic composition of chemically different waters. METHODS: Water samples were collected from an organic-rich river and from mineral particulate-rich rivers. Filtered and unfiltered water samples were stored either at room temperature or frozen at -18°C in order to assess possible biases due to (i) different water storage temperature, and (ii) storage of bulk (unfiltered) vs filtered water. Iron isotope measurements were performed by Multicollector Inductively Coupled Plasma Mass Spectrometry with a Thermo Electron Neptune instrument, after Fe purification using anion-exchange resins. RESULTS: Our data reveal that bulk water storage at room temperature without filtration produces minor changes in the dissolved Fe isotopic composition of mineral particulate-rich waters, but significant isotopic composition changes in organic-rich waters. In both cases, however, the impact of the different procedures on the Fe concentrations was strong. On the other hand, the bulk water stored frozen without filtration produced more limited changes in the dissolved Fe concentrations, and also on isotopic compositions, relative to the samples filtered in the field. The largest effect was again observed for the organic-rich waters. CONCLUSIONS: These findings suggest that a time lag between water collection and filtration may cause isotopic exchanges between the dissolved and particulate Fe fractions. When it is not possible to filter the samples in the field immediately after collection, the less detrimental approach is to freeze the bulk water sample until filtration, to reduce isotopic artifacts.


Assuntos
Técnicas de Química Analítica/métodos , Água Doce/química , Isótopos de Ferro/química , Ferro/química , Rios/química , Brasil , Filtração , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA