Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem J ; 480(4): 259-281, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36727473

RESUMO

Neither the Pseudomonas aeruginosa aldehyde dehydrogenase encoded by the PA4189 gene nor its ortholog proteins have been biochemically or structurally characterized and their physiological function is unknown. We cloned the PA4189 gene, obtained the PA4189 recombinant protein, and studied its structure-function relationships. PA4189 is an NAD+-dependent aminoaldehyde dehydrogenase highly efficient with protonated aminoacetaldehyde and 3-aminopropionaldehyde, which are much more preferred to the non-protonated species as indicated by pH studies. Based on the higher activity with aminoacetaldehyde than with 3-aminopropionaldehyde, we propose that aminoacetaldehyde might be the PA4189 physiological substrate. Even though at the physiological pH of P. aeruginosa cells the non-protonated aminoacetaldehyde species will be predominant, and despite the competition of these species with the protonated ones, PA4189 would very efficiently oxidize ACTAL in vivo, producing glycine. To our knowledge, PA4189 is the first reported enzyme that might metabolize ACTAL, which is considered a dead-end metabolite because its consuming reactions are unknown. The PA4189 crystal structure reported here suggested that the charge and size of the active-site residue Glu457, which narrows the aldehyde-entrance tunnel, greatly define the specificity for small positively charged aldehydes, as confirmed by the kinetics of the E457G and E457Q variants. Glu457 and the residues that determine Glu457 conformation inside the active site are conserved in the PA4189 orthologs, which we only found in proteobacteria species. Also is conserved the PA4189 genomic neighborhood, which suggests that PA4189 participates in an uncharacterized metabolic pathway. Our results open the door to future efforts to characterize this pathway.


Assuntos
Aldeídos , Pseudomonas aeruginosa , Aldeídos/química , Propilaminas , Oxirredutases , Cinética , Especificidade por Substrato
2.
Heliyon ; 7(11): e08464, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34888425

RESUMO

The photosynthetic phosphoenolpyruvate carboxylase isozyme from C4 plants (PEPC-C4) has a complex allosteric regulation, involving positive cooperativity in binding the substrate phosphoenolpyruvate as well as positive and negative allosteric effectors. Besides the proposed R- and T-states, previous kinetic results suggested functionally relevant different R-states of the maize enzyme (ZmPEPC-C4) elicited by PEP or its two kinds of activators, glucose 6-phosphate or glycine. To detect these different R-state conformations, we used as conformational probes the fluorescence of 8-anilino-1-naphthalene sulfonate (ANS), near-UV circular dichroism (CD) spectroscopy, and limited proteolysis by trypsin. Phosphoenolpyruvate and malate binding caused distinct concentration-dependent fluorescence changes of ZmPEPC-C4/ANS, suggesting that they elicited conformational states different from that of the free enzyme, while glucose 6-phosphate or glycine binding did not produce fluorescence changes. Differences were also observed in the near UV CD spectra of the enzyme, free or complexed with its substrate or allosteric effectors. Additionally, differences in the trypsin-digestion fragmentation patterns, as well as in the susceptibility of the free and complexed enzyme to digestion and digestion-provoked loss of activity, provided evidence of several ZmPEPC-C4 conformations in solution elicited by the substrate and the allosteric effectors. Using the already reported ZmPEPC-C4 crystal structures and bioinformatics methods, we predicted that the most probable trypsin-cleavage sites are located in superficial flexible regions, which seems relevant for the protein dynamics underlying the function and allosteric regulation of this enzyme. Together, our findings agree with previous kinetic results, shed light on this enzyme's complex allosteric regulation, and place ZmPEPC-C4 in the growing list of allosteric enzymes possessing an ensemble of closely related R-state conformations.

3.
Biochem J ; 477(11): 2095-2114, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32459324

RESUMO

Activation of phosphoenolpyruvate carboxylase (PEPC) enzymes by glucose 6-phosphate (G6P) and other phospho-sugars is of major physiological relevance. Previous kinetic, site-directed mutagenesis and crystallographic results are consistent with allosteric activation, but the existence of a G6P-allosteric site was questioned and competitive activation-in which G6P would bind to the active site eliciting the same positive homotropic effect as the substrate phosphoenolpyruvate (PEP)-was proposed. Here, we report the crystal structure of the PEPC-C4 isozyme from Zea mays with G6P well bound into the previously proposed allosteric site, unambiguously confirming its existence. To test its functionality, Asp239-which participates in a web of interactions of the protein with G6P-was changed to alanine. The D239A variant was not activated by G6P but, on the contrary, inhibited. Inhibition was also observed in the wild-type enzyme at concentrations of G6P higher than those producing activation, and probably arises from G6P binding to the active site in competition with PEP. The lower activity and cooperativity for the substrate PEP, lower activation by glycine and diminished response to malate of the D239A variant suggest that the heterotropic allosteric activation effects of free-PEP are also abolished in this variant. Together, our findings are consistent with both the existence of the G6P-allosteric site and its essentiality for the activation of PEPC enzymes by phosphorylated compounds. Furthermore, our findings suggest a central role of the G6P-allosteric site in the overall kinetics of these enzymes even in the absence of G6P or other phospho-sugars, because of its involvement in activation by free-PEP.


Assuntos
Glucose-6-Fosfato/química , Fosfoenolpiruvato Carboxilase/química , Fosfoenolpiruvato/química , Proteínas de Plantas/química , Zea mays/enzimologia , Regulação Alostérica , Domínio Catalítico , Glucose-6-Fosfato/metabolismo , Cinética , Fosfoenolpiruvato/metabolismo , Fosfoenolpiruvato Carboxilase/genética , Fosfoenolpiruvato Carboxilase/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Zea mays/genética
4.
Biochem J ; 473(7): 873-85, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26792760

RESUMO

In plants, the last step in the biosynthesis of the osmoprotectant glycine betaine (GB) is the NAD(+)-dependent oxidation of betaine aldehyde (BAL) catalysed by some aldehyde dehydrogenase (ALDH) 10 enzymes that exhibit betaine aldehyde dehydrogenase (BADH) activity. Given the irreversibility of the reaction, the short-term regulation of these enzymes is of great physiological relevance to avoid adverse decreases in the NAD(+):NADH ratio. In the present study, we report that the Spinacia oleracea BADH (SoBADH) is reversibly and partially inactivated by BAL in the absence of NAD(+)in a time- and concentration-dependent mode. Crystallographic evidence indicates that the non-essential Cys(450)(SoBADH numbering) forms a thiohemiacetal with BAL, totally blocking the productive binding of the aldehyde. It is of interest that, in contrast to Cys(450), the catalytic cysteine (Cys(291)) did not react with BAL in the absence of NAD(+) The trimethylammonium group of BAL binds in the same position in the inactivating or productive modes. Accordingly, BAL does not inactivate the C(450)SSoBADH mutant and the degree of inactivation of the A(441)I and A(441)C mutants corresponds to their very different abilities to bind the trimethylammonium group. Cys(450)and the neighbouring residues that participate in stabilizing the thiohemiacetal are strictly conserved in plant ALDH10 enzymes with proven or predicted BADH activity, suggesting that inactivation by BAL is their common feature. Under osmotic stress conditions, this novel partial and reversible covalent regulatory mechanism may contribute to preventing NAD(+)exhaustion, while still permitting the synthesis of high amounts of GB and avoiding the accumulation of the toxic BAL.


Assuntos
Betaína-Aldeído Desidrogenase/química , Betaína/análogos & derivados , Mutação de Sentido Incorreto , Proteínas de Plantas/química , Spinacia oleracea/enzimologia , Substituição de Aminoácidos , Betaína/química , Betaína-Aldeído Desidrogenase/genética , Domínio Catalítico , Cristalografia por Raios X , Ativação Enzimática , Proteínas de Plantas/genética , Spinacia oleracea/genética
5.
Chem Biol Interact ; 234: 59-74, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-25601141

RESUMO

To find out the residues that influence the coenzyme preference of aldehyde dehydrogenases (ALDHs), we reviewed, analyzed and correlated data from their known crystal structures and amino-acid sequences with their published kinetic parameters for NAD(P)(+). We found that the conformation of the Rossmann-fold loops participating in binding the adenosine ribose is very conserved among ALDHs, so that coenzyme specificity is mainly determined by the nature of the residue at position 195 (human ALDH2 numbering). Enzymes with glutamate or proline at 195 prefer NAD(+) because the side-chains of these residues electrostatically and/or sterically repel the 2'-phosphate group of NADP(+). But contrary to the conformational rigidity of proline, the conformational flexibility of glutamate may allow NADP(+)-binding in some enzymes by moving the carboxyl group away from the 2'-phosphate group, which is possible if a small neutral residue is located at position 224, and favored if the residue at position 53 interacts with Glu195 in a NADP(+)-compatible conformation. Of the residues found at position 195, only glutamate interacts with the NAD(+)-adenosine ribose; glutamine and histidine cannot since their side-chain points are opposite to the ribose, probably because the absence of the electrostatic attraction by the conserved nearby Lys192, or its electrostatic repulsion, respectively. The shorter side-chains of other residues-aspartate, serine, threonine, alanine, valine, leucine, or isoleucine-are distant from the ribose but leave room for binding the 2'-phosphate group. Generally, enzymes having a residue different from Glu bind NAD(+) with less affinity, but they can also bind NADP(+) even sometimes with higher affinity than NAD(+), as do enzymes containing Thr/Ser/Gln195. Coenzyme preference is a variable feature within many ALDH families, consistent with being mainly dependent on a single residue that apparently has no other structural or functional roles, and therefore can easily be changed through evolution and selected in response to physiological needs.


Assuntos
Aldeído Desidrogenase/metabolismo , Sítios de Ligação/genética , Coenzimas/metabolismo , Especificidade por Substrato/genética , Sequência de Aminoácidos , Aminoácidos/metabolismo , Ácido Glutâmico/metabolismo , Humanos , Cinética , Modelos Moleculares , NAD/metabolismo , NADP/metabolismo , Eletricidade Estática
6.
Chem Biol Interact ; 202(1-3): 41-50, 2013 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-23295228

RESUMO

Potassium ions are non-essential activators of several aldehyde dehydrogenases (ALDHs), whereas a few others require the cation for activity. Two kinds of cation-binding sites, which we named intra-subunit and inter-subunit, have been observed in crystal structures of ALDHs, and based on reported crystallographic data, we here propose the existence of a third kind located in the central cavity of some tetrameric ALDHs. Given the high structural similarity between these enzymes, cation-binding sites may be present in many other members of this superfamily. To explore the prevalence of these sites, we compared 37 known crystal structures from 13 different ALDH families and evaluated the possible existence of a cation on the basis of the number, distance and geometry of its potential interactions, as well as of B-factor values of modeled cations obtained in new refinements of some reported crystal structures. Also, by performing multiple alignments of 855 non-redundant amino acid sequences, we assessed the degree of conservation in their respective families of the amino acid residues putatively relevant for cation binding. Among the ALDH enzymes studied, and according to our analyses, potential intra-subunit cation-binding sites seem to be present in most members of ALDH2, ALDH1L, ALDH4, ALDH5, ALDH7, ALDH10, and ALDH25 families, as well as in the bacterial and fungal members of the ALDH9 family and in a few ALDH1, ALDH6, ALDH11 and ALDH26 enzymes; potential inter-subunit sites in members of ALDH1L, ALDH3, ALDH4 from bacillales, ALDH5, ALDH7, ALDH9, ALDH10, ALDH11 and ALDH25 families; and potential central-cavity sites only in some bacterial and animal ALDH9s and in most members of the ALDH1L family. Because potassium is the most abundant intracellular cation, we propose that these are potassium-binding sites, but the specific structural and/or functional roles of the cation bound to these different sites remain to be investigated.


Assuntos
Aldeído Desidrogenase/química , Aldeído Desidrogenase/metabolismo , Cátions Monovalentes/química , Cátions Monovalentes/metabolismo , Bacillus subtilis/enzimologia , Bacillus subtilis/metabolismo , Sítios de Ligação , Cristalografia por Raios X/métodos , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Modelos Moleculares , Alinhamento de Sequência , Staphylococcus aureus/enzimologia , Staphylococcus aureus/metabolismo
7.
Chem Biol Interact ; 202(1-3): 51-61, 2013 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-23219887

RESUMO

Within the aldehyde dehydrogenase (ALDH) superfamily, proteins belonging to the ALDH9, ALDH10, ALDH25, ALDH26 and ALDH27 families display activity as ω-aminoaldehyde dehydrogenases (AMADHs). These enzymes participate in polyamine, choline and arginine catabolism, as well as in synthesis of several osmoprotectants and carnitine. Active site aromatic and acidic residues are involved in binding the ω-aminoaldehydes in plant ALDH10 enzymes. In order to ascertain the degree of conservation of these residues among AMADHs and to evaluate their possible relevance in determining the aminoaldehyde specificity, we compared the known amino acid sequences of every ALDH family that have at least one member with known crystal structure, as well as the electrostatic potential surface of the aldehyde binding sites of these structures. Our analyses showed that four or three aromatic residues form a similar "aromatic box" in the active site of the AMADH enzymes, being the equivalents to Phe170 and Trp177 (human ALDH2 numbering) strictly conserved in all of them, which supports their relevance in binding the aminoaldehyde by cation-π interactions. In addition, all AMADHs exhibit a negative electrostatic potential surface in the aldehyde-entrance tunnel, due to side-chain carboxyl and hydroxyl groups or main-chain carbonyl groups. In contrast, ALDHs that have non-polar or negatively charged substrates exhibit neutral or positive electrostatic potential surfaces, respectively. Finally, our comparative sequence analyses revealed that the residues equivalent to Asp121 and Phe170 are highly conserved in many ALDH families irrespective of their substrate specificity-suggesting that they perform a role in catalysis additional or different to binding of the substrate-and that the positions Met124, Cys301, and Cys303 are hot spots changed during evolution to confer aldehyde specificity to several ALDH families.


Assuntos
Aldeído Desidrogenase/química , Aldeído Desidrogenase/metabolismo , Aldeídos/química , Aldeídos/metabolismo , Aminoácidos/química , Aminoácidos/metabolismo , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X/métodos , Humanos , Modelos Moleculares , Especificidade por Substrato
8.
Plant Physiol ; 158(4): 1570-82, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22345508

RESUMO

Plant Aldehyde Dehydrogenase10 (ALDH10) enzymes catalyze the oxidation of ω-primary or ω-quaternary aminoaldehydes, but, intriguingly, only some of them, such as the spinach (Spinacia oleracea) betaine aldehyde dehydrogenase (SoBADH), efficiently oxidize betaine aldehyde (BAL) forming the osmoprotectant glycine betaine (GB), which confers tolerance to osmotic stress. The crystal structure of SoBADH reported here shows tyrosine (Tyr)-160, tryptophan (Trp)-167, Trp-285, and Trp-456 in an arrangement suitable for cation-π interactions with the trimethylammonium group of BAL. Mutation of these residues to alanine (Ala) resulted in significant K(m)(BAL) increases and V(max)/K(m)(BAL) decreases, particularly in the Y160A mutant. Tyr-160 and Trp-456, strictly conserved in plant ALDH10s, form a pocket where the bulky trimethylammonium group binds. This space is reduced in ALDH10s with low BADH activity, because an isoleucine (Ile) pushes the Trp against the Tyr. Those with high BADH activity instead have Ala (Ala-441 in SoBADH) or cysteine, which allow enough room for binding of BAL. Accordingly, the mutation A441I decreased the V(max)/K(m)(BAL) of SoBADH approximately 200 times, while the mutation A441C had no effect. The kinetics with other ω-aminoaldehydes were not affected in the A441I or A441C mutant, demonstrating that the existence of an Ile in the second sphere of interaction of the aldehyde is critical for discriminating against BAL in some plant ALDH10s. A survey of the known sequences indicates that plants have two ALDH10 isoenzymes: those known to be GB accumulators have a high-BAL-affinity isoenzyme with Ala or cysteine in this critical position, while non GB accumulators have low-BAL-affinity isoenzymes containing Ile. Therefore, BADH activity appears to restrict GB synthesis in non-GB-accumulator plants.


Assuntos
Aminoácidos/metabolismo , Betaína-Aldeído Desidrogenase/metabolismo , Betaína/análogos & derivados , Spinacia oleracea/enzimologia , Aminoácidos Aromáticos/metabolismo , Betaína/química , Betaína/metabolismo , Betaína-Aldeído Desidrogenase/química , Sítios de Ligação , Isoenzimas/química , Isoenzimas/metabolismo , Cinética , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Ligação Proteica , Relação Estrutura-Atividade , Especificidade por Substrato
9.
Chem Biol Interact ; 191(1-3): 137-46, 2011 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-21195066

RESUMO

The overall chemical mechanism of the reaction catalyzed by the hydrolytic aldehyde dehydrogenases (ALDHs) involves three main steps: (1) nucleophilic attack of the thiol group of the catalytic cysteine on the carbonyl carbon of the aldehyde substrate; (2) hydride transfer from the tetrahedral thiohemiacetal intermediate to the pyridine ring of NAD(P)(+); and (3) hydrolysis of the resulting thioester intermediate (deacylation). Crystal structures of different ALDHs from several organisms-determined in the absence and presence of bound NAD(P)(+), NAD(P)H, aldehydes, or acid products-showed specific details at the atomic level about the catalytic residues involved in each of the catalytic steps. These structures also showed the conformational flexibility of the nicotinamide half of the cofactor, and of the catalytic cysteinyl and glutamyl residues, the latter being the general base that activates the hydrolytic water molecule in the deacylation step. The architecture of the ALDH active site allows for this conformational flexibility, which, undoubtedly, is crucial for catalysis in these enzymes. Focusing in the deacylation step of the ALDH-catalyzed reaction, here we review and systematize the crystallographic evidence of the structural features responsible for the conformational flexibility of the catalytic glutamyl residue, and for the positioning of the hydrolytic water molecule inside the ALDH active site. Based on the analysis of the available crystallographic data and of energy-minimized models of the thioester reaction intermediate, as well as on the results of theoretical calculations of the pK(a) of the carboxyl group of the catalytic glutamic acid in its three different conformations, we discuss the role that the conformational flexibility of this residue plays in the activation of the hydrolytic water. We also propose a critical participation in the water activation process of the peptide bond to which the catalytic glutamic acid in the intermediate conformation is hydrogen bonded.


Assuntos
Aldeído Desidrogenase/química , Aldeído Desidrogenase/metabolismo , Biocatálise , Domínio Catalítico , Acilação , Bactérias/enzimologia , Cristalografia por Raios X , Ácido Glutâmico/metabolismo , Ligação de Hidrogênio , Hidrólise , Modelos Moleculares , Termodinâmica , Água/metabolismo
10.
J Mol Biol ; 385(2): 542-57, 2009 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-19013472

RESUMO

In the human pathogen Pseudomonas aeruginosa, the NAD(P)(+)-dependent betaine aldehyde dehydrogenase (PaBADH) may play the dual role of assimilating carbon and nitrogen from choline or choline precursors--abundant at infection sites--and producing glycine betaine and NADPH, potentially protective against the high-osmolarity and oxidative stresses prevalent in the infected tissues. Disruption of the PaBADH gene negatively affects the growth of bacteria, suggesting that this enzyme could be a target for antibiotic design. PaBADH is one of the few ALDHs that efficiently use NADP(+) and one of the even fewer that require K(+) ions for stability. Crystals of PaBADH were obtained under aerobic conditions in the presence of 2-mercaptoethanol, glycerol, NADP(+) and K(+) ions. The three-dimensional structure was determined at 2.1-A resolution. The catalytic cysteine (C286, corresponding to C302 of ALDH2) is oxidized to sulfenic acid or forms a mixed disulfide with 2-mercaptoethanol. The glutamyl residue involved in the deacylation step (E252, corresponding to E268 of ALDH2) is in two conformations, suggesting a proton relay system formed by two well-conserved residues (E464 and K162, corresponding to E476 and K178, respectively, of ALDH2) that connects E252 with the bulk water. In some active sites, a bound glycerol molecule mimics the thiohemiacetal intermediate; its hydroxyl oxygen is hydrogen bonded to the nitrogen of the amide groups of the side chain of the conserved N153 (N169 of ALDH2) and those of the main chain of C286, which form the "oxyanion hole." The nicotinamide moiety of the nucleotide is not observed in the crystal, and the adenine moiety binds in the usual way. A salt bridge between E179 (E195 of ALDH2) and R40 (E53 of ALDH2) moves the carboxylate group of the former away from the 2'-phosphate of the NADP(+), thus avoiding steric clashes and/or electrostatic repulsion between the two groups. Finally, the crystal shows two K(+) binding sites per subunit. One is in an intrasubunit cavity that we found to be present in all known ALDH structures. The other--not described before for any ALDH but most likely present in most of them--is located in between the dimeric unit, helping structure a region involved in coenzyme binding and catalysis. This may explain the effects of K(+) ions on the activity and stability of PaBADH.


Assuntos
Betaína-Aldeído Desidrogenase/química , Cátions/metabolismo , NADP/metabolismo , Potássio/metabolismo , Pseudomonas aeruginosa/enzimologia , Sítios de Ligação , Cristalografia por Raios X , Modelos Moleculares , Estrutura Terciária de Proteína
11.
Arch Biochem Biophys ; 468(2): 167-73, 2007 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17977510

RESUMO

The NAD+-dependent animal betaine aldehyde dehydrogenases participate in the biosynthesis of glycine betaine and carnitine, as well as in polyamines catabolism. We studied the kinetics of inactivation of the porcine kidney enzyme (pkBADH) by the drug disulfiram, a thiol-reagent, with the double aim of exploring the enzyme dynamics and investigating whether it could be an in vivo target of disulfiram. Both inactivation by disulfiram and reactivation by reductants were biphasic processes with equal limiting amplitudes. Under certain conditions half of the enzyme activity became resistant to disulfiram inactivation. NAD+ protected almost 100% at 10 microM but only 50% at 5mM, and vice versa if the enzyme was pre-incubated with NAD+ before the chemical modification. NADH, betaine aldehyde, and glycine betaine also afforded greater protection after pre-incubation with the enzyme than without pre-incubation. Together, these findings suggest two kinds of active sites in this seemingly homotetrameric enzyme, and complex, unusual ligand-induced conformational changes. In addition, they indicate that, in vivo, pkBADH is most likely protected against disulfiram inactivation.


Assuntos
Aldeído Desidrogenase/química , Aldeído Desidrogenase/ultraestrutura , Betaína-Aldeído Desidrogenase/química , Betaína-Aldeído Desidrogenase/ultraestrutura , Dissulfiram/química , Rim/enzimologia , Modelos Químicos , Animais , Simulação por Computador , Estabilidade Enzimática , Modelos Moleculares , Conformação Proteica , Suínos
12.
Biochem Biophys Res Commun ; 341(2): 408-15, 2006 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-16426571

RESUMO

In the human pathogen Pseudomonas aeruginosa, betaine aldehyde dehydrogenase (PaBADH) may play the dual role of assimilating carbon and nitrogen from choline or choline precursors--abundant at infection sites--and producing glycine betaine, which protects the bacterium against the high-osmolality stress prevalent in the infected tissues. This tetrameric enzyme contains four cysteine residues per subunit and is a potential drug target. In our search for specific inhibitors, we mutated the catalytic Cys286 to alanine and chemically modified the recombinant wild-type and the four Cys-->Ala single mutants with thiol reagents. The small methyl-methanethiosulfonate inactivated the enzymes without affecting their stability while the bulkier dithionitrobenzoic acid (DTNB) and bis[diethylthiocarbamyl] disulfide (disulfiram) induced enzyme dissociation--at 23 degrees C--and irreversible aggregation--at 37 degrees C. Of the four Cys-->Ala mutants only C286A retained its tetrameric structure after DTNB or disulfiram treatments, suggesting that steric constraints arising upon the covalent attachment of a bulky group to C286 resulted in distortion of the backbone configuration in the active site region followed by a severe decrease in enzyme stability. Since neither NAD(P)H nor betaine aldehyde prevented disulfiram-induced PaBADH inactivation or aggregation, and reduced glutathione was unable to restore the activity of the modified enzyme, we propose that disulfiram could be a useful drug to combat infection by P. aeruginosa.


Assuntos
Anti-Infecciosos/farmacologia , Betaína-Aldeído Desidrogenase/metabolismo , Dissulfiram/farmacologia , Inibidores Enzimáticos/farmacologia , Pseudomonas aeruginosa/metabolismo , Alanina/química , Sítios de Ligação , Catálise , Cromatografia , Cisteína/química , Ácido Ditionitrobenzoico/farmacologia , Glutationa/química , Cinética , Metanossulfonato de Metila/análogos & derivados , Metanossulfonato de Metila/farmacologia , Modelos Químicos , Mutagênese Sítio-Dirigida , Mutação , NADP/química , Conformação Proteica , Estrutura Quaternária de Proteína , Proteínas/química , Compostos de Sulfidrila , Temperatura , Fatores de Tempo
13.
Arch Microbiol ; 185(1): 14-22, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16315011

RESUMO

In the human pathogen Pseudomonas aeruginosa, betaine aldehyde dehydrogenase (BADH) may play a dual role assimilating carbon and nitrogen from choline or choline precursors--abundant at infection sites--and producing glycine betaine, which protects the bacteria against the high-osmolarity stress prevalent in the infected tissues. We cloned the P. aeruginosa BADH gene and expressed the BADH protein in Escherichia coli. The recombinant protein appears identical to its native counterpart, as judged by Western blot, N-terminal amino acid sequence, tryptophan-fluorescence emission spectra, circular-dichroism spectroscopy, size-exclusion chromatography, and kinetic properties. Computational analysis indicated that the promoter sequence of the putative operon that includes the BADH gene has a consensus-binding site for the choline-sensing transcription repressor BetI, and putative boxes for ArcA and Lrp transcription factors but no known elements of response to osmotic stress. This is consistent with the strong induction of BADH expression by choline and with the lack of effect of NaCl. As there were significant amounts of BADH protein and activity in P. aeruginosa cells grown on glucose plus choline, as well as the BADH activity exhibiting tolerance to salt, it is likely that glycine betaine is synthesized in vivo and could play an important osmoprotectant role under conditions of infection.


Assuntos
Betaína-Aldeído Desidrogenase/genética , Colina/metabolismo , Pseudomonas aeruginosa/enzimologia , Cloreto de Sódio/metabolismo , Sequência de Bases , Betaína-Aldeído Desidrogenase/biossíntese , Betaína-Aldeído Desidrogenase/metabolismo , Colina/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Glucose/genética , Glucose/metabolismo , Biologia Molecular , Dados de Sequência Molecular , Pseudomonas aeruginosa/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética
14.
Biochimie ; 87(12): 1056-64, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16054744

RESUMO

Betaine aldehyde dehydrogenase (BADH) from the human pathogen Pseudomonas aeruginosa is a tetrameric enzyme that contains a catalytic Cys286 and three additional cysteine residues, Cys353, 377, and 439, per subunit. In the present study, we have investigated the role of the three non-essentials in enzyme activity and stability by homology modeling and site-directed mutagenesis. Cys353 and Cys377 are located at the protein surface with their sulfur atoms buried, while Cys439 is at the subunit interface between the monomers forming a dimeric pair. All three residues were individually mutated to alanine and Cys439 also to serine and valine. The five mutant proteins were expressed in Escherichia coli and purified to homogeneity. Their steady-state kinetics was not significantly affected, neither was their structure as indicated by circular dicroism spectropolarimetry, protein intrinsic fluorescence, and size-exclusion chromatography. However, stability was severely reduced in the Cys439 mutants particularly in C439S and C439V, which were inactive when expressed at 37 degrees C. They also exhibited higher sensitivity to thermal and chemical inactivation, and higher propensity to dissociation by dilution or exposure to low ionic strength than the wild-type enzyme. Size-exclusion chromatography indicates that substitution of Cys439 lead to unstable dimers or to stable dimeric conformations not compatible with a stable tetrameric structure. To the best of our knowledge, this is the first study of an aldehyde dehydrogenase revealing a residue at the dimer interface involved in holding the dimer, and consequently the tetramer, together.


Assuntos
Betaína-Aldeído Desidrogenase/genética , Betaína-Aldeído Desidrogenase/metabolismo , Citosina , Pseudomonas aeruginosa/enzimologia , Substituição de Aminoácidos , Animais , Betaína-Aldeído Desidrogenase/química , Dicroísmo Circular , Peixes , Cinética , Fígado/enzimologia , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Desnaturação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Termodinâmica
15.
Biochimie ; 87(2): 205-14, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15760714

RESUMO

Purified catalase-1 (CAT-1) from Neurospora crassa asexual spores is oxidized by singlet oxygen giving rise to active enzyme forms with different electrophoretic mobility. These enzyme forms are detected in vivo under stress conditions and during development at the start of the asexual morphogenetic transitions. CAT-1 heme b is oxidized to heme d by singlet oxygen. Here, we describe functional and structural comparisons of the non-oxidized enzyme with the fully oxidized one. Using a broad H(2)O(2) concentration range (0.01-3.0 M), non-hyperbolic saturation kinetics was found in both enzymes, indicating that kinetic complexity does not arise from heme oxidation. The kinetics was consistent with the existence of two kinds of active sites differing more than 10-times in substrate affinity. Positive cooperativity for one or both of the saturation curves is possible. Kinetic constants obtained at 22 degrees C varied slightly and apparent activation energies for the reaction of both components are not significantly different. Protein fluorescence and circular dicroism of the two enzymes were nearly identical, indicating no gross conformational change with oxidation. Increased sensitivity to inhibition by cyanide indicated a local change at the active site in the oxidized catalase. Oxidized catalase was less resistant to high temperatures, high guanidinium ion concentration, and digestion with subtilisin. It was also less stable than the non-oxidized enzyme at an acid pH. The overall data show that the oxidized enzyme is structurally different from the non-oxidized one, although it conserves most of the remarkable stability and catalytic efficiency of the non-oxidized enzyme. Because the enzyme in the cell can be oxidized under physiological conditions, preservation of functional and structural properties of catalase could have been selected through evolution to assure an active enzyme under oxidative stress conditions.


Assuntos
Catalase/química , Neurospora crassa/enzimologia , Oxigênio Singlete/química , Esporos Fúngicos/enzimologia , Heme/química , Oxirredução
16.
Chem Biol Interact ; 143-144: 129-37, 2003 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-12604197

RESUMO

The reaction catalyzed by betaine aldehyde dehydrogenase (BADH) involves the nucleophilic attack of a catalytic cysteinyl residue on the aldehyde substrate. As a possible mechanism of regulation, we have studied the modulation by ligands of the reactivity and/or accessibility of the essential thiol of the enzyme from the human pathogen Pseudomonas aeruginosa and the leaves of the plant Amaranthus hypochondriacus (amaranth). In the absence of ligands, the kinetics of inactivation by thiol modifying reagents of both enzymes were biphasic, suggesting the existence of two enzyme conformers differing in the reactivity of their catalytic thiolate. Preincubation of P. aeruginosa BADH with the coenzymes or the aldehyde prior to the chemical modification brought about active site rearrangements that resulted in an important decrease in the inactivation rate. Amaranth BADH responded similarly to the preincubation with NADH or betaine aldehyde but NAD(+) elicited opposite changes, increasing the rate of inactivation after prolonged preincubation. In amaranth BADH, the different behavior of both coenzymes, and the observed biphasic inactivation kinetics are consistent with the previously proposed iso kinetic mechanism, characterized by the existence of two interconvertible apoenzyme forms, one able to bind NAD(+) and the other NADH. Taken together, our results suggest that ligand-induced conformational changes in BADH from the two sources studied might be important for both proper enzyme function and protection against oxidation.


Assuntos
Aldeído Oxirredutases/metabolismo , Amaranthus/enzimologia , Pseudomonas aeruginosa/enzimologia , Compostos de Sulfidrila/metabolismo , Aldeído Oxirredutases/química , Betaína-Aldeído Desidrogenase , Catálise , Cinética , Ligantes , Folhas de Planta/enzimologia , Conformação Proteica
17.
Chem Biol Interact ; 143-144: 139-48, 2003 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-12604198

RESUMO

Betaine aldehyde dehydrogenase from the human pathogen Pseudomonas aeruginosa requires K(+) ions for maintenance of its active conformation. In order to explore if this property is shared by other BADHs of different origins and to further understand the mechanism underlying the effects of these ions, we carried out a comparative study on the stability and quaternary structure of P. aeruginosa, porcine kidney and amaranth leaves BADHs in the absence of K(+) ions. At low enzyme concentrations, the bacterial and porcine enzymes were totally inactivated upon removal of K(+) following biphasic and monophasic kinetics, respectively, whereas the amaranth enzyme retained its activity. Inactivation of P. aeruginosa BADH was much faster than that of the porcine enzyme. The oxidized coenzyme protected both enzymes against inactivation by the absence of K(+), whereas betaine aldehyde afforded partial protection to the bacterial BADH and increased the inactivation rate of the porcine. Reactivation of the inactive enzymes, by adding back to the incubation medium K(+) ions, was dependent on enzyme concentration, suggesting that enzyme dissociation takes place in the absence of K(+). In the bacterial enzyme, NH(4)(+) but not Na(+) ions could mimic the effects of K(+), whereas the three cations tested reactivated porcine BADH, indicating a requirement of this enzyme for high ionic strength rather than for a specific monovalent cation. Size exclusion chromatography of the inactivated enzymes confirmed that K(+) ions or other monovalent cations are required for the maintenance of the quaternary structure of these two BADHs. At pH 7.0, in the absence of K(+) in a buffer of low ionic strength, the active tetrameric form of P. aeruginosa BADH dissociated into inactive monomers and that of porcine kidney BADH into inactive dimers. Once reactivated, both enzymes reassociated into active tetramers.


Assuntos
Aldeído Oxirredutases/metabolismo , Amaranthus/enzimologia , Rim/enzimologia , Pseudomonas aeruginosa/enzimologia , Aldeído Oxirredutases/antagonistas & inibidores , Animais , Betaína-Aldeído Desidrogenase , Cátions Monovalentes , Estabilidade Enzimática , Folhas de Planta/enzimologia , Especificidade por Substrato , Suínos
18.
Chem Biol Interact ; 143-144: 149-58, 2003 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-12604199

RESUMO

Betaine aldehyde dehydrogenase (BADH) activity might be crucial for the growth of the human pathogen Pseudomonas aeruginosa under conditions of infection and therefore appears to be a suitable target for antimicrobial agents. As a first step in the search for BADH inhibitors, we have tested the effects of the known aldehyde dehydrogenase inhibitor disulfiram (DSF) on the activity of P. aeruginosa and Amaranthus hypochondriacus (amaranth) leaf BADHs. DSF totally inactivated both enzymes in a time- and dose-dependent manner. In the case of the Pseudomonas enzyme, inactivation kinetics were monophasic with a second-order inactivation rate constant at pH 6.9 of 4.9+/-0.4 M(-1) s(-1), whereas the plant enzyme was inactivated in a biphasic process with second-order inactivation rate constants at pH 7.5 of 6.8+/-0.6 and 0.33+/-0.04 M(-1) s(-1). At pH 8.8, the second-order rate constants for inactivation of the bacterial enzyme was 1 x 10(3) M(-1) s(-1), which compare well with that reported for human liver mitochondrial aldehyde dehydrogenase (ALDH2), the target of DSF inhibition in the aversion therapy of alcoholism. Both BADHs were inactivated faster in the presence of NAD(P)(+) than in its absence, whereas NAD(P)H and betaine aldehyde protected the bacterial, but increased the inactivation rate of the plant enzyme. The inactivated enzymes were reactivated by dithiothreitol, but not by a high concentration of the physiological reductant glutathione. The high in vitro sensitivity of the Pseudomonas BADH to DSF, particularly in the presence of NAD(P)(+), together with the lack of reversibility of DSF modification by glutathione, makes this inhibitor a potential antimicrobial agent and suggests that it might be worth testing its effects and those of its metabolites in vivo, under culture conditions in which the activity of BADH is required for growth of the bacteria.


Assuntos
Aldeído Oxirredutases/antagonistas & inibidores , Amaranthus/enzimologia , Dissulfiram/farmacologia , Inibidores Enzimáticos/farmacologia , Pseudomonas aeruginosa/enzimologia , Betaína-Aldeído Desidrogenase
19.
Am J Physiol Renal Physiol ; 282(4): F599-607, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11880320

RESUMO

The purpose of the present study was to determine the major functional, pharmacological, and regulatory properties of the flounder thiazide-sensitive Na-Cl cotransporter (flTSC) to make a direct comparison with our recent characterization of the rat TSC (rTSC; Monroy A, Plata C, Hebert SC, and Gamba G. Am J Physiol Renal Physiol 279: F161-F169, 2000). When expressed in Xenopus laevis oocytes, flTSC exhibits lower affinity for Na(+) than for Cl(-), with apparent Michaelis-Menten constant (K(m)) values of 58.2 +/- 7.1 and 22.1 +/- 4.2 mM, respectively. These K(m) values are significantly higher than those observed in rTSC. The Na(+) and Cl(-) affinities decreased when the concentration of the counterion was lowered, suggesting that the binding of one ion increases the affinity of the transporter for the other. The effect of several thiazides on flTSC function was biphasic. Low concentrations of thiazides (10(-9) to 10(-7) M) resulted in activation of the cotransporter, whereas higher concentrations (10(-6) to 10(-4) M) were inhibitory. In rTSC, this biphasic effect was observed only with chlorthalidone. The affinity for thiazides in flTSC was lower than in rTSC, but the affinity in flTSC was not affected by the Na(+) or the Cl(-) concentration in the uptake medium. In addition to thiazides, flTSC and rTSC were inhibited by Hg(2+), with an apparent higher affinity for rTSC. Finally, flTSC function was decreased by activation of protein kinase C with phorbol esters and by hypertonicity. In summary, we have found significant regulatory, kinetic, and pharmacological differences between flTSC and rTSC orthologues.


Assuntos
Benzotiadiazinas , Linguado/metabolismo , Inibidores de Simportadores de Cloreto de Sódio/farmacologia , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Animais , Clortalidona/farmacologia , Diuréticos , Ativação Enzimática/efeitos dos fármacos , Feminino , Soluções Hipertônicas , Técnicas In Vitro , Cinética , Mercúrio/toxicidade , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Ligação Proteica , Biossíntese de Proteínas , Proteína Quinase C/metabolismo , Ratos , Simportadores de Cloreto de Sódio-Potássio/efeitos dos fármacos , Especificidade da Espécie , Relação Estrutura-Atividade , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA