Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 277: 111503, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33091786

RESUMO

Enhancing the thermal comfort of low-income housing in developing countries located in tropical areas is one of the main challenges for engineers and architects worldwide. The coconut mesocarp fibre (coir) has shown enormous potential for improving some properties of modified concretes or mortars, such as low-weight and high-acoustic isolation. In this study, the potential use of modified mortars by coconut fibres as a facade coating layer to enhance thermal comfort in low-income housing structures was evaluated for the city of Cartagena de Indias, Colombia. An actual typical low-income house of 42 m2 was monitored. Temperature and humidity variations were monitored for 39 days, thermal characteristics of coir-modified mortars were also investigated using differential scanning calorimetry (DSC) and an adaptation of the standard test method of the guarded-hot-cartridge apparatus. The EnergyPlus™ software was used to simulate indoor temperature variations in the studied house. Results show that during the period of 4 h of maximum sunlight radiation with outdoor temperatures in the range of 29-34 °C, coating the cement-sand hollow block structure with a layer of coir-modified mortar could reduce indoor room temperatures by 0.5-1.5 °C, approximately. Thus, there is a potential to enhance the thermal comfort in low-income housing structures with coconut fibre modified mortars while reducing annual energy costs of cooling by 16%, making it affordable for low-income families in the Caribbean region of Colombia.


Assuntos
Cocos , Habitação , Região do Caribe , Cidades , Colômbia
2.
Environ Sci Pollut Res Int ; 27(32): 39913-39922, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32783179

RESUMO

Plastics have become strong environmental stressors of coastal marine ecosystems. Their introduction into the marine ecosystem is subjected to different mechanisms, including the inadequate disposal of solid waste and dumping of wastewater. In addition, their chemical composition makes them resistant to variables such as temperature and salinity of water. These polymers are degraded and fragmented mainly due to the action of the waves, which results in the formation of smaller particles called microplastics. Microplastics are characterized by being persistent in the environment due to their low biodegradation, and although they have a maximum size of 5 mm, there is a wide range of sizes suggested by different authors. According to their use, microplastics can be classified as primary when they are recognized at first sight, and as secondary, when they are gradually divided. Microplastics have become a potential risk to the health of marine species due to their small size, and the risk to human health due to their persistence through trophic chains is alarming. Given the potential impact these materials would have in the biota, and the need to assist the different regulatory agencies to develop political acts on the proper management and disposal of microplastics, the aim of this work was to identify different research carried out at international level on established methodologies for studies of identification and quantification of microplastics, bacterial communities, and contaminants adhered to microparticles. Given the above, some methodologies have been identified and used in various studies for the identification and quantification of these materials on beaches. It should be noted that in different countries, there has been an increase in research related to contamination by microplastics on beaches, in which bacterial communities attached to these plastic particles have been also identified. Likewise, not only the risks and threats have been determined for marine species but also for the health of people who frequent tourist places such as beaches.


Assuntos
Plásticos , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental , Humanos , Microplásticos , Águas Residuárias , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA