Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(20): 57667-57682, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36967428

RESUMO

In this work, we propose zinc oxide (ZnO) surface functionalization with plasmonic silver nanoparticles (AgNP) of different sizes and shapes (spheres, prisms, and rods) creating ZnO/AgNP nanohybrids. These were characterized by UV-Vis spectroscopy, X-ray diffraction, transmission electron microscopy, Fourier-transform infrared spectroscopy, diffuse reflectance spectroscopy, and photoluminescence spectroscopy. Surface functionalization with AgNP improved photocatalyst electronic properties, its visible light absorption, and slow electron/hole recombination on the ZnO surface. Photocatalysis assays performed with a polychromatic Hg lamp degraded methyl orange, a model of persistent organic pollutant in water. A systematic study showed that the photodegradation kinetics of the nanohybrids are significantly more efficient than pure ZnO (up to 18 times) and that AgNP size and especially its shape are important in dye degradation. Mechanistic studies revealed that degradation occurred by direct dye reduction on the ZnO surface holes, ZnO electron transfer to Ag followed by •O2- formation, and direct injection of AgNP hot electrons in the ZnO conduction band. The last effect was stronger for anisotropic AgNP, which explains their high kinetic degradation rates. Therefore, the rational design in ZnO/AgNP nanohybrid engineering and a systematic approach used in this manuscript allowed a detailed description of photodegradation process that occur at ZnO/AgNP interface. Our results are not conclusive about AgNP size; on the other hand, it clearly demonstrates that anisotropic nanoparticles (as Ag rods and prims) present superior photodegradation efficiency and are promising particles for further large-scale use of solar-irradiated nanohybrids.


Assuntos
Nanopartículas Metálicas , Óxido de Zinco , Óxido de Zinco/química , Fotólise , Nanopartículas Metálicas/química , Prata/química , Luz , Catálise
2.
Photochem Photobiol ; 98(1): 175-183, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34309861

RESUMO

Silver nanoparticles (AgNPs) are incredibly versatile nanostructures that more recently have been exploited to create advanced optoelectronic materials due enhancement of local magnetic field after its irradiation. However, the use of AgNPs as nanoantennas to amplify photophysical properties of close photosensitizer (PS) molecules in photodynamic therapy is still underexplored. The reason for that is the difficulty to control crucial parameters such as silver-PS distance in aqueous solution. In this scenario, here we propose a nanohybrid system where AgNP/PS distance is controlled by a thin layer of different Pluronic copolymers. The controllable distance and aqueous stability of proposed nanohybrids allow a tunable enhancement of fluorescence emission and singlet oxygen generation of some selected PS molecules. A detailed mechanism investigation demonstrated that the observed metal-enhanced photophysics is due to magnetic field enhancement close to AgNP surface (AgNP/PS distance-controlled effect) and the resonant coupling of AgNP hot electrons and HOMO-LUMO energies of the PS (AgNP/PS spectral overlap-controlled effect). These results show that the rational design in engineering new nanohybrid structures allowed photophysical improvement of PS molecules in aqueous solution in a tunable way and point out Pluronic-based AgNP/PS nanohybrids as a smart material for further developments aiming at theranostic applications in photodynamic therapy.


Assuntos
Nanopartículas Metálicas , Prata , Nanopartículas Metálicas/química , Fármacos Fotossensibilizantes , Poloxâmero , Polímeros , Prata/química
3.
Mater Sci Eng C Mater Biol Appl ; 114: 110987, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32994027

RESUMO

Nanotechnology development provides new strategies to improve different treatment modalities by integration of multiple molecules in a single multifunctional nanoparticle. In this scenario, we highlight silver nanoparticles (AgNPs) favorable optical properties such as absorption and emission of light in the visible region of the spectrum. This allows its synergic combination with the photosensitizer molecule methylene blue (MB) in order to improve outcomes in photodynamic-based therapies. Therefore, we engineered here a new multifunctional nanostructured system based in the synthesis of pluronic-based AgNP/MB nanohybrids inspired by the concept of supramolecular chemistry. Silver reduction in water and Pluronic F127 aqueous solutions in the presence of hydrogen peroxide as etching agent at several concentrations induced the formation of anisotropic forms of AgNPs. Electronic absorption and TEM studies demonstrated a greater kinetic and morphological control for Pluronic synthetized NPs. The smart design of the proposed nanohybrids favored the enhancement of MB photophysical properties such as fluorescence emission and singlet oxygen production due a synergic action from resonant coupling between AgNP magnetic field and MB molecules. Results also demonstrated that AgNP-MB distance modulation in Pluronic matrix is a relevant parameter in MB photophysical improvement. Finally, since AgNP absorbance spectrum is dependent on AgNP shape, it plays a critical role in the improvement of MB photophysical properties. These results show that the rational design in engineering new multifunctional nanoparticles is essential and point out that Pluronic AgNP/MB nanohybrids as a smart material for further developments aiming photodynamic-based therapies.


Assuntos
Nanopartículas Metálicas , Fotoquimioterapia , Azul de Metileno , Poloxâmero , Prata
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA