RESUMO
The generalized analytical quadrature filter from a set of interferograms with arbitrary phase shifts is obtained. Both symmetrical and non symmetrical algorithms for any order are reported. The analytic expression is obtained through the convolution of a set of two-frame algorithms and expressed in terms of the combinatorial theory. Finally, the solution is applied to obtain several generalized tunable quadrature filters.
RESUMO
We present a theoretical analysis to estimate the amount of phase noise due to noisy interferograms in Phase Shifting Interferometry (PSI). We also analyze the fact that linear filtering transforms corrupting multiplicative noise in Electronic Speckle Pattern Interferometry (ESPI) into fringes corrupted by additive gaussian noise. This fact allow us to obtain a formula to estimate the standard deviation of the noisy demodulated phase as a function of the spectral response of the preprocessing spatial filtering combined with the PSI algorithm used. This phase noise power formula is the main result of this contribution.