Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Arch Toxicol ; 93(9): 2515-2524, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31363819

RESUMO

Aluminum (Al) is a neurotoxin and is associated with the etiology of neurodegenerative diseases, such as Alzheimer's disease (AD). The Al-free ion (Al3+) is the biologically reactive and toxic form. However, the underlying mechanisms of Al toxicity in the brain remain unclear. Here, we evaluated the effects of Al3+ (in the chloride form-AlCl3) at different concentrations (0.1-100 µM) on the morphology, proliferation, apoptosis, migration and differentiation of neural progenitor cells (NPCs) isolated from embryonic telencephalons, cultured as neurospheres. Our results reveal that Al3+ at 100 µM reduced the number and diameter of neurospheres. Cell cycle analysis showed that Al3+ had a decisive function in proliferation inhibition of NPCs during neural differentiation and induced apoptosis on neurospheres. In addition, 1 µM Al3+ resulted in deleterious effects on neural phenotype determination. Flow cytometry and immunocytochemistry analysis showed that Al3+ promoted a decrease in immature neuronal marker ß3-tubulin expression and an increase in co-expression of the NPC marker nestin and glial fibrillary acidic protein. Thus, our findings indicate that Al3+ caused cellular damage and reduced proliferation and migration, resulting in global inhibition of NPC differentiation and neurogenesis.


Assuntos
Cloreto de Alumínio/toxicidade , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Células-Tronco Embrionárias/patologia , Feminino , Masculino , Camundongos , Células-Tronco Neurais/patologia , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/fisiopatologia , Fenótipo , Telencéfalo/efeitos dos fármacos , Telencéfalo/embriologia
2.
Chem Biol Drug Des ; 90(6): 1161-1172, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28581643

RESUMO

A new series of 3,6-disubstituted 2-(methylthio)-4-(trifluoromethyl)-3,4-dihydropyrimidin-4-ols displaying methyl, phenyl, aryl, and heteroaryl groups at the 6-position; and methyl, ethyl, allyl, and phenyl groups at the 3-position of the dihydropyrimidine ring, were synthesized and evaluated in vitro for acetylcholinesterase inhibitory activity. Seven compounds showed activity with IC50 values in the lower micromolar range. The compound 4-trifluoromethyl-6-(4-fluorophenyl)-3-methyl-2-methylthio-3,4-dihydropyrimidin-4-ol (6e) had the best inhibitory activity (IC50 2.2 ± 0.9 µm) and this inhibition was characterized as competitive. The molecular docking study showed that the acetylcholinesterase enzyme accommodates compound 6e in its catalytic site. The enantiomers of compound 6e, present similar interactions: π-π stacking interactions between the aromatic ring of the ligand's 4-fluorophenyl moiety and the aromatic rings of the electron-rich Trp84; and H-bonds between the hydroxyl group of Tyr121 and the hydroxyl moiety from 6e. The antioxidant effect of the dihydropyrimidin-4-ols was also investigated.


Assuntos
Acetilcolinesterase/química , Inibidores da Colinesterase/síntese química , Pirimidinas/química , Acetilcolinesterase/metabolismo , Animais , Antioxidantes/química , Sítios de Ligação , Butirilcolinesterase/química , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/metabolismo , Dípteros/enzimologia , Desenho de Fármacos , Humanos , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Estrutura Terciária de Proteína , Pirimidinas/metabolismo , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA