Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pediatr Crit Care Med ; 23(6): 425-434, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35283451

RESUMO

OBJECTIVES: The microbiome may be affected by trauma and critical illness. Many studies of the microbiome in critical illness are restricted to a single body site or time point and confounded by preexisting conditions. We report temporal and spatial alterations in the microbiome of previously healthy children with severe traumatic brain injury (TBI). DESIGN: We collected oral, rectal, and skin swabs within 72 hours of admission and then twice weekly until ICU discharge. Samples were analyzed by 16S rRNA gene amplicon sequencing. Children undergoing elective outpatient surgery served as controls. Alpha and beta diversity comparisons were performed with Phyloseq, and differentially abundant taxa were predicted using Analysis of Composition of Microbiomes. SETTING: Five quaternary-care PICUs. PATIENTS: Patients less than 18 years with severe TBI requiring placement of an intracranial pressure monitor. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Three hundred twenty-seven samples were analyzed from 23 children with severe TBI and 35 controls. The community composition of initial oral (F = 3.2756, R2 = 0.0535, p = 0.012) and rectal (F = 3.0702, R2 = 0.0649, p = 0.007) samples differed between TBI and control patients. Rectal samples were depleted of commensal bacteria from Ruminococcaceae, Bacteroidaceae, and Lachnospiraceae families and enriched in Staphylococcaceae after TBI (p < 0.05). In exploratory analyses, antibiotic exposure, presence of an endotracheal tube, and occurrence of an infection were associated with greater differences of the rectal and oral microbiomes between TBI patients and healthy controls, whereas enteral nutrition was associated with smaller differences (p < 0.05). CONCLUSIONS: The microbiome of children with severe TBI is characterized by early depletion of commensal bacteria, loss of site specificity, and an enrichment of potential pathogens. Additional studies are needed to determine the impact of these changes on clinical outcomes.


Assuntos
Lesões Encefálicas Traumáticas , Microbiota , Bactérias , Criança , Estado Terminal , Humanos , Microbiota/genética , RNA Ribossômico 16S/genética
2.
Crit Care Med ; 45(5): e516-e523, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28252538

RESUMO

OBJECTIVES: Links between microbial alterations and systemic inflammation have been demonstrated in chronic disease, but little is known about these interactions during acute inflammation. This study investigates the effect of dietary supplementation with cellulose, a nonfermentable fiber, on the gut microbiota, inflammatory markers, and survival in two murine models of sepsis. DESIGN: Prospective experimental study. SETTING: University laboratory. SUBJECTS: Six-week-old male C57BL/6 wild-type mice. INTERVENTIONS: Mice were assigned to low-fiber, normal-fiber, or high-fiber diets with or without antibiotics for 2 weeks and then subjected to sepsis by cecal ligation and puncture or endotoxin injection. Fecal samples were collected for microbiota analyses before and after dietary interventions. MEASUREMENTS AND MAIN RESULTS: Mice that received a high-fiber diet demonstrated increased survival after cecal ligation and puncture relative to mice receiving low-fiber or normal-fiber diets. The survival benefit was associated with decreased serum concentration of pro-inflammatory cytokines, reduced neutrophil infiltration in the lungs, and diminished hepatic inflammation. The high-fiber diet also increased survival after endotoxin injection. Bacterial 16S ribosomal RNA gene sequences from each sample were amplified, sequenced, and analyzed. Fiber supplementation yielded an increase in relative abundance of the genera Akkermansia and Lachnospiraceae, taxa commonly associated with metabolic health. Administration of antibiotics to mice on the high-fiber diet negated the enrichment of Akkermansia species and the survival benefit after cecal ligation and puncture. CONCLUSION: Dietary supplementation with cellulose offers a microbe-mediated survival advantage in murine models of sepsis. Improved understanding of the link between diet, the microbiota, and systemic illness may yield new therapeutic strategies for patients with sepsis.


Assuntos
Fibras na Dieta/farmacologia , Suplementos Nutricionais , Microbioma Gastrointestinal/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Sepse/tratamento farmacológico , Animais , Antibacterianos , Biomarcadores , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/metabolismo , Estudos Prospectivos , RNA Ribossômico 16S/genética , Análise de Sobrevida
3.
Pancreas ; 46(2): 260-267, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27846140

RESUMO

OBJECTIVE: The goals of this study were to characterize bacterial communities within fecal samples, pancreatic fluid, bile, and jejunal contents from patients undergoing pancreaticoduodenectomy (PD) and to identify associations between microbiome profiles and clinical variables. METHODS: Fluid was collected from the pancreas, common bile duct, and proximal jejunum from 50 PD patients. Postoperative fecal samples were also collected. The microbial burden within samples was quantified with droplet digital polymerase chain reaction. Bacterial 16S ribosomal RNA gene sequences were amplified, sequenced, and analyzed. Data from fecal samples were compared with publicly available data obtained from volunteers. RESULTS: Droplet digital polymerase chain reaction confirmed the presence of bacteria in all sample types, including pancreatic fluid. Relative to samples from the American Gut Project, fecal samples from PD patients were enriched with Klebsiella and Bacteroides and were depleted of anaerobic taxa (eg, Roseburia and Faecalibacterium). Similar patterns were observed within PD pancreas, bile, and jejunal samples. Postoperative fecal samples from patients with a pancreatic fistula contained increased abundance of Klebsiella and decreased abundance of commensal anaerobes, for example, Ruminococcus. CONCLUSIONS: This study confirms the presence of altered bacterial populations within samples from PD patients. Future research must validate these findings and may evaluate targeted microbiome modifications to improve outcomes in PD patients.


Assuntos
Bile/microbiologia , Fezes/microbiologia , Jejuno/microbiologia , Microbiota/genética , Suco Pancreático/microbiologia , Pancreaticoduodenectomia/métodos , Idoso , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , DNA Bacteriano/química , DNA Bacteriano/genética , Humanos , Período Perioperatório , Dinâmica Populacional , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA