Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 13: 958641, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36238154

RESUMO

An overview of the total Arabidopsis thaliana transcriptome, described previously by our research group, pointed some noncoding RNA (ncRNA) as participants in the restoration of hair-root phenotype in A. thaliana rhd6 mutants, leading us to a deeper investigation. A transcriptional gene expression profiling of seedling roots was performed aiming to identify ncRNA responsive to nitric oxide (GSNO) and auxin (IAA), and their involvement in root hair formation in the rhd6 null mutant. We identified 3,631 ncRNAs, including new ones, in A. thaliana and differential expression (DE) analysis between the following: 1) GSNO-treated rhd6 vs. untreated rhd6, 2) IAA-treated rhd6 vs. untreated rhd6, 3) GSNO-treated rhd6 vs. IAA-treated rhd6, and 4) WS-2 vs. untreated rhd6 detected the greatest number of DE genes in GSNO-treated rhd6. We detected hundreds of in silico interactions among ncRNA and protein-coding genes (PCGs), highlighting MIR5658 and MIR171 precursors highly upregulated in GSNO-treated rhd6 and wild type, respectively. Those ncRNA interact with many DE PCGs involved in hormone signaling, cell wall development, transcription factors, and root hair formation, becoming candidate genes in cell wall modulation and restoration of root hair phenotype by GSNO treatment. Our data shed light on how GSNO modulates ncRNA and their PCG targets in A. thaliana root hair formation.

2.
New Phytol ; 213(4): 1771-1786, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27880005

RESUMO

Nitric oxide (NO) exerts pleiotropic effects on plant development; however, its involvement in cell wall modification during root hair formation (RHF) has not yet been addressed. Here, mutants of Arabidopsis thaliana with altered root hair phenotypes were used to assess the involvement of S-nitrosoglutathione (GSNO), the primary NO source, in cell wall dynamics and gene expression in roots induced to form hairs. GSNO and auxin restored the root hair phenotype of the hairless root hair defective 6 (rhd6) mutant. A positive correlation was observed between increased NO production and RHF induced by auxin in rhd6 and transparent testa glabra (ttg) mutants. Deposition of an epitope within rhamnogalacturonan-I recognized by the CCRC-M2 antibody was delayed in root hair cells (trichoblasts) compared with nonhair cells (atrichoblasts). GSNO, but not auxin, restored the wild-type root glycome and transcriptome profiles in rhd6, modulating the expression of a large number of genes related to cell wall composition and metabolism, as well as those encoding ribosomal proteins, DNA and histone-modifying enzymes and proteins involved in post-translational modification. Our results demonstrate that NO plays a key role in cell wall remodelling in trichoblasts and suggest that it also participates in chromatin modification in root cells of A. thaliana.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Parede Celular/metabolismo , Mutação/genética , Raízes de Plantas/genética , S-Nitrosoglutationa/farmacologia , Transcrição Gênica/efeitos dos fármacos , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Parede Celular/efeitos dos fármacos , Epitopos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Modelos Biológicos , Óxido Nítrico/metabolismo , Pectinas/metabolismo , Fenótipo , Epiderme Vegetal/citologia , Raízes de Plantas/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética
3.
Mol Reprod Dev ; 79(4): 272-82, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22223460

RESUMO

Remodeling and relaxation of the mouse pubic symphysis (PS) are central events in parturition. The mouse PS remodels in a hormone-controlled process that involves the modification of the fibrocartilage into an interpubic ligament (IpL), followed by its relaxation prior to parturition. It is recognized that nitric oxide synthase (NOS) and consequently nitric oxide (NO) generation play important roles in extracellular matrix modification, and may promote cytoskeleton changes that contribute to the remodeling of connective tissue, which precedes the onset of labor. To our knowledge, no studies thus far have investigated inducible nitric oxide synthase (iNOS) expression, protein localization, and NO generation in the mouse PS during pregnancy. In this work, we used a combination of the immunolocalization of iNOS, its relative mRNA expression, and NO production to examine the possible involvement of iNOS in remodeling and relaxation of the mouse IpL during late pregnancy. The presence of iNOS was observed in chondrocytes and fibroblast-like cells in the interpubic tissues. In addition, iNOS mRNA and NO production were higher during preterm labor on Day 19 of pregnancy (D19) than NO production on D18 or in virgin groups. The significant increase in iNOS mRNA expression and NO generation from the partially relaxed IpL at D18 to the completely relaxed IpL at D19 may indicate that NO plays an important role in late pregnancy during relaxation of the mouse IpL.


Assuntos
Trabalho de Parto/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico/metabolismo , Prenhez/metabolismo , Sínfise Pubiana/metabolismo , RNA Mensageiro/metabolismo , Análise de Variância , Animais , Condrócitos/metabolismo , Feminino , Fibroblastos/metabolismo , Imuno-Histoquímica , Ligamentos/química , Ligamentos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/genética , Gravidez , Prenhez/genética , RNA Mensageiro/análise , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA