Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Nat Commun ; 15(1): 5694, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38972873

RESUMO

Tumor-associated myeloid-derived cells (MDCs) significantly impact cancer prognosis and treatment responses due to their remarkable plasticity and tumorigenic behaviors. Here, we integrate single-cell RNA-sequencing data from different cancer types, identifying 29 MDC subpopulations within the tumor microenvironment. Our analysis reveals abnormally expanded MDC subpopulations across various tumors and distinguishes cell states that have often been grouped together, such as TREM2+ and FOLR2+ subpopulations. Using deconvolution approaches, we identify five subpopulations as independent prognostic markers, including states co-expressing TREM2 and PD-1, and FOLR2 and PDL-2. Additionally, TREM2 alone does not reliably predict cancer prognosis, as other TREM2+ macrophages show varied associations with prognosis depending on local cues. Validation in independent cohorts confirms that FOLR2-expressing macrophages correlate with poor clinical outcomes in ovarian and triple-negative breast cancers. This comprehensive MDC atlas offers valuable insights and a foundation for futher analyses, advancing strategies for treating solid cancers.


Assuntos
Glicoproteínas de Membrana , Células Mieloides , Neoplasias , Receptores Imunológicos , Análise de Célula Única , Microambiente Tumoral , Humanos , Análise de Célula Única/métodos , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Células Mieloides/metabolismo , Células Mieloides/patologia , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Prognóstico , Neoplasias/genética , Neoplasias/patologia , Neoplasias/metabolismo , Feminino , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/genética , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética
2.
Endocrinology ; 165(6)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38712392

RESUMO

Long-term ß-adrenoceptor (ß-AR) stimulation is a pathological mechanism associated with cardiovascular diseases resulting in endothelial and perivascular adipose tissue (PVAT) dysfunction. In this study, we aimed to identify whether ß-adrenergic signaling has a direct effect on PVAT. Thoracic aorta PVAT was obtained from male Wistar rats and cultured ex vivo with the ß-AR agonist isoproterenol (Iso; 1 µM) or vehicle for 24 hours. Conditioned culture medium (CCM) from Iso-treated PVAT induced a marked increase in aorta contractile response, induced oxidative stress, and reduced nitric oxide production in PVAT compared to vehicle. In addition, Iso-treated PVAT and PVAT-derived differentiated adipocytes exhibited higher corticosterone release and protein expression of 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1), an enzyme responsible for de novo synthesis of corticosterone. Macrophages exposed to Iso also exhibited increased corticosterone release in response to ß-AR stimulation. Incubation of Iso-treated PVAT and PVAT-derived differentiated adipocytes with ß3-AR antagonist restored aorta contractile function modulated by Iso-CCM and normalized 11ß-HSD1 protein expression. These results show that ß3-AR signaling leads to upregulation of 11ß-HSD1 in PVAT, thus increasing corticosterone release and contributing to impair the anticontractile function of this tissue.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1 , Corticosterona , Isoproterenol , Animais , Masculino , Ratos , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , Adipócitos/metabolismo , Adipócitos/efeitos dos fármacos , Tecido Adiposo/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/metabolismo , Corticosterona/metabolismo , Meios de Cultivo Condicionados/farmacologia , Isoproterenol/farmacologia , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Receptores Adrenérgicos beta/metabolismo
3.
Sleep ; 47(7)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38788154

RESUMO

STUDY OBJECTIVES: Sleep deprivation is a potential risk factor for metabolic diseases, including obesity and type 2 diabetes. We evaluated the impacts of moderate chronic sleep deprivation on glucose and lipid homeostasis in adult rats. METHODS: Wistar rats (both sexes) were sleep-perturbed daily for 2 hours at the early (06:00-08:00) and the late light cycle (16:00-18:00) five days a week (except weekends) for 4 weeks. RESULTS: Sleep perturbation (SP) resulted in reduced body weight gain in both sexes, associated with altered food intake and reduced adiposity. SP did not alter the short- or long-term memories or cause anxiogenic behavior. No major changes were observed in the plasma insulin, leptin, triacylglycerol, non-esterified fatty acids, and blood glucose upon SP. After SP, females exhibited a transitory glucose intolerance, while males became glucose intolerant at the end of the experimental period. Male rats also developed higher insulin sensitivity at the end of the SP protocol. Morphometric analyses revealed no changes in hepatic glycogen deposition, pancreatic islet mass, islet-cell distribution, or adrenal cortex thickness in SP rats from both sexes, except for lower adipocyte size compared with controls. We did not find homogeneous changes in the relative expression of circadian and metabolic genes in muscle or hepatic tissues from the SP rats. CONCLUSIONS: Moderate chronic SP reduces visceral adiposity and causes glucose intolerance with a more pronounced impact on male rats, reinforcing the metabolic risks of exposure to sleep disturbances.


Assuntos
Glicemia , Homeostase , Resistência à Insulina , Ratos Wistar , Privação do Sono , Animais , Privação do Sono/fisiopatologia , Privação do Sono/complicações , Privação do Sono/metabolismo , Masculino , Feminino , Ratos , Homeostase/fisiologia , Resistência à Insulina/fisiologia , Glicemia/metabolismo , Metabolismo dos Lipídeos , Insulina/metabolismo , Insulina/sangue , Intolerância à Glucose/fisiopatologia , Adiposidade/fisiologia , Ingestão de Alimentos/fisiologia , Leptina/sangue
4.
Nat Commun ; 15(1): 3070, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594249

RESUMO

Cellular response to redox imbalance is crucial for organismal health. microRNAs are implicated in stress responses. ALG-1, the C. elegans ortholog of human AGO2, plays an essential role in microRNA processing and function. Here we investigated the mechanisms governing ALG-1 expression in C. elegans and the players controlling lifespan and stress resistance downstream of ALG-1. We show that upregulation of ALG-1 is a shared feature in conditions linked to increased longevity (e.g., germline-deficient glp-1 mutants). ALG-1 knockdown reduces lifespan and oxidative stress resistance, while overexpression enhances survival against pro-oxidant agents but not heat or reductive stress. R02D3.7 represses alg-1 expression, impacting oxidative stress resistance at least in part via ALG-1. microRNAs upregulated in glp-1 mutants (miR-87-3p, miR-230-3p, and miR-235-3p) can target genes in the protein disulfide isomerase pathway and protect against oxidative stress. This study unveils a tightly regulated network involving transcription factors and microRNAs which controls organisms' ability to withstand oxidative stress.


Assuntos
Proteínas de Caenorhabditis elegans , MicroRNAs , Animais , Humanos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Estresse Oxidativo/genética , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
5.
Sci Rep ; 14(1): 7375, 2024 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548777

RESUMO

The COVID-19 pandemic was initiated by the rapid spread of a SARS-CoV-2 strain. Though mainly classified as a respiratory disease, SARS-CoV-2 infects multiple tissues throughout the human body, leading to a wide range of symptoms in patients. To better understand how SARS-CoV-2 affects the proteome from cells with different ontologies, this work generated an infectome atlas of 9 cell models, including cells from brain, blood, digestive system, and adipocyte tissue. Our data shows that SARS-CoV-2 infection mainly trigger dysregulations on proteins related to cellular structure and energy metabolism. Despite these pivotal processes, heterogeneity of infection was also observed, highlighting many proteins and pathways uniquely dysregulated in one cell type or ontological group. These data have been made searchable online via a tool that will permit future submissions of proteomic data ( https://reisdeoliveira.shinyapps.io/Infectome_App/ ) to enrich and expand this knowledgebase.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Proteômica , Pandemias
6.
Nat Metab ; 6(3): 409-432, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38438626

RESUMO

Obesity rates are increasing almost everywhere in the world, although the pace and timing for this increase differ when populations from developed and developing countries are compared. The sharp and more recent increase in obesity rates in many Latin American countries is an example of that and results from regional characteristics that emerge from interactions between multiple factors. Aware of the complexity of enumerating these factors, we highlight eight main determinants (the physical environment, food exposure, economic and political interest, social inequity, limited access to scientific knowledge, culture, contextual behaviour and genetics) and discuss how they impact obesity rates in Latin American countries. We propose that initiatives aimed at understanding obesity and hampering obesity growth in Latin America should involve multidisciplinary, global approaches that consider these determinants to build more effective public policy and strategies, accounting for regional differences and disease complexity at the individual and systemic levels.


Assuntos
Obesidade , Humanos , América Latina/epidemiologia , Obesidade/epidemiologia
7.
Gene ; 895: 148014, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37984536

RESUMO

Intertissue RNA transport recently emerged as a novel signaling mechanism. In mammals, mounting evidence suggests that small RNA transfer between cells is widespread and used in various physiological contexts. In the nematode C. elegans, a similar mechanism is conferred by the systemic RNAi pathway. Members of the Systemic RNA Interference Defective (SID) family act at different steps of cellular RNA uptake and export. The limiting step in systemic RNA interference (RNAi) is the import of extracellular RNAs via the conserved double-stranded (dsRNA)-gated dsRNA channel SID-1. To better understand the role of RNAs as intertissue signaling molecules, we modified the function of SID-1 in specific tissues of C. elegans. We observed that sid-1 loss-of-function mutants are as healthy as wild-type worms. Conversely, overexpression of sid-1 in C. elegans intestine, muscle, or neurons rendered worms short-lived. The effects of intestinal sid-1 overexpression were attenuated by silencing the components of systemic RNAi sid-1, sid-2 and sid-5, implicating systemic RNA signaling in the lifespan reduction. Accordingly, tissue-specific overexpression of sid-2 and sid-5 also reduced worm lifespan. Additionally, an RNAi screen for components of several non-coding RNA pathways revealed that silencing the miRNA biogenesis proteins PASH-1 and DCR-1 rendered the lifespan of worms with intestinal sid-1 overexpression similar to controls. Collectively, our data support the notion that systemic RNA signaling must be tightly regulated, and unbalancing that process provokes a reduction in lifespan. We termed this phenomenon Intercellular/Extracellular Systemic RNA imbalance (InExS).


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Interferência de RNA , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Longevidade/genética , RNA de Cadeia Dupla/metabolismo , Proteínas de Membrana/genética , Mamíferos/genética
8.
iScience ; 26(12): 108409, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38058311

RESUMO

Given the importance of the kinin B1 receptor in insulin and leptin hormonal regulation, which in turn is crucial in maternal adaptations to ensure nutrient supply to the fetus, we investigated the role of this receptor in maternal metabolism and fetoplacental development. Wild-type and kinin B1 receptor-deficient (B1KO) female mice were mated with male mice of the opposite genotype. Consequently, the entire litter was heterozygous for kinin B1 receptor, ensuring that there would be no influence of offspring genotype on the maternal phenotype. Maternal kinin B1 receptor blockade reduces adiponectin secretion by adipose tissue ex vivo, consistent with lower adiponectin levels in pregnant B1KO mice. Furthermore, fasting insulinemia also increased, which was associated with placental insulin resistance, reduced placental glycogen accumulation, and heavier offspring. Therefore, we propose the combination of chronic hyperinsulinemia and reduced adiponectin secretion in B1KO female mice create a maternal obesogenic environment that results in heavier pups.

9.
Eur Heart J ; 44(44): 4696-4712, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37944136

RESUMO

BACKGROUND AND AIMS: Developing novel therapies to battle the global public health burden of heart failure remains challenging. This study investigates the underlying mechanisms and potential treatment for 4-hydroxynonenal (4-HNE) deleterious effects in heart failure. METHODS: Biochemical, functional, and histochemical measurements were applied to identify 4-HNE adducts in rat and human failing hearts. In vitro studies were performed to validate 4-HNE targets. RESULTS: 4-HNE, a reactive aldehyde by-product of mitochondrial dysfunction in heart failure, covalently inhibits Dicer, an RNase III endonuclease essential for microRNA (miRNA) biogenesis. 4-HNE inhibition of Dicer impairs miRNA processing. Mechanistically, 4-HNE binds to recombinant human Dicer through an intermolecular interaction that disrupts both activity and stability of Dicer in a concentration- and time-dependent manner. Dithiothreitol neutralization of 4-HNE or replacing 4-HNE-targeted residues in Dicer prevents 4-HNE inhibition of Dicer in vitro. Interestingly, end-stage human failing hearts from three different heart failure aetiologies display defective 4-HNE clearance, decreased Dicer activity, and miRNA biogenesis impairment. Notably, boosting 4-HNE clearance through pharmacological re-activation of mitochondrial aldehyde dehydrogenase 2 (ALDH2) using Alda-1 or its improved orally bioavailable derivative AD-9308 restores Dicer activity. ALDH2 is a major enzyme responsible for 4-HNE removal. Importantly, this response is accompanied by improved miRNA maturation and cardiac function/remodelling in a pre-clinical model of heart failure. CONCLUSIONS: 4-HNE inhibition of Dicer directly impairs miRNA biogenesis in heart failure. Strikingly, decreasing cardiac 4-HNE levels through pharmacological ALDH2 activation is sufficient to re-establish Dicer activity and miRNA biogenesis; thereby representing potential treatment for patients with heart failure.


Assuntos
Insuficiência Cardíaca , MicroRNAs , Humanos , Ratos , Animais , MicroRNAs/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo , Aldeídos/metabolismo , Aldeídos/farmacologia , Processamento de Proteína Pós-Traducional , Aldeído-Desidrogenase Mitocondrial/genética
10.
Res Sq ; 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37502859

RESUMO

Obesity-related type II diabetes (diabesity) has increased global morbidity and mortality dramatically. Previously, the ancient drug salicylate demonstrated promise for the treatment of type II diabetes, but its clinical use was precluded due to high dose requirements. In this study, we present a nitroalkene derivative of salicylate, 5-(2-nitroethenyl)salicylic acid (SANA), a molecule with unprecedented beneficial effects in diet-induced obesity (DIO). SANA reduces DIO, liver steatosis and insulin resistance at doses up to 40 times lower than salicylate. Mechanistically, SANA stimulated mitochondrial respiration and increased creatine-dependent energy expenditure in adipose tissue. Indeed, depletion of creatine resulted in the loss of SANA action. Moreover, we found that SANA binds to creatine kinases CKMT1/2, and downregulation CKMT1 interferes with the effect of SANA in vivo. Together, these data demonstrate that SANA is a first-in-class activator of creatine-dependent energy expenditure and thermogenesis in adipose tissue and emerges as a candidate for the treatment of diabesity.

11.
Chem Biol Interact ; 382: 110610, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37348670

RESUMO

Quercetin is a flavonol widely distributed in plants and has various described biological functions. Several studies have reported on its ability to restore neuronal function in a wide variety of disease models, including animal models of neurodegenerative disorders such as Parkinson's disease. Quercetin per se can act as a neuroprotector/neuromodulator, especially in diseases related to impaired dopaminergic neurotransmission. However, little is known about how quercetin interacts with the dopaminergic machinery. Here we employed the nematode Caenorhabditis elegans to study this putative interaction. After observing behavioral modulation, mutant analysis and gene expression in C. elegans upon exposure to quercetin at a concentration that does not protect against MPTP, we constructed a homology-based dopamine transporter protein model to conduct a docking study. This led to suggestive evidence on how quercetin may act as a dopaminergic modulator by interacting with C. elegans' dopamine transporter and alter the nematode's exploratory behavior. Consistent with this model, quercetin controls C. elegans behavior in a way dependent on the presence of both the dopamine transporter (dat-1), which is up-regulated upon quercetin exposure, and the dopamine receptor 2 (dop-2), which appears to be mandatory for dat-1 up-regulation. Our data propose an interaction with the dopaminergic machinery that may help to establish the effects of quercetin as a neuromodulator.


Assuntos
Dopamina , Quercetina , Transmissão Sináptica , Animais , Caenorhabditis elegans , Quercetina/farmacologia , Dopamina/metabolismo , Proteínas de Caenorhabditis elegans , Fármacos Neuroprotetores/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Neurônios/metabolismo , Estresse Oxidativo , Transmissão Sináptica/efeitos dos fármacos , Receptores de Dopamina D2/metabolismo , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina
12.
Biomedicines ; 11(5)2023 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-37239116

RESUMO

Aging causes alterations in body composition. Specifically, visceral fat mass increases with age and is associated with age-related diseases. The pathogenic potential of visceral fat accumulation has been associated with its anatomical location and metabolic activity. Visceral fat may control systemic metabolism by secreting molecules that act in distal tissues, mainly the liver, through the portal vein. Currently, little is known about age-related changes in visceral fat in humans. Aiming to identify molecular and cellular changes occurring with aging in the visceral fat of humans, we analyzed publicly available transcriptomic data of 355 omentum samples from the Genotype-Tissue Expression portal (GTEx) of 20-79-year-old males and females. We identified the functional enrichment of genes associated with aging, inferred age-related changes in visceral fat cellularity by deconvolution analysis, profiled the senescence-associated secretory phenotype of visceral adipose tissue, and predicted the connectivity of the age-induced visceral fat secretome with the liver. We demonstrate that age induces alterations in visceral fat cellularity, synchronous to changes in metabolic pathways and a shift toward a pro-inflammatory secretory phenotype. Furthermore, our approach identified candidates such as ADIPOQ-ADIPOR1/ADIPOR2, FCN2-LPR1, and TF-TFR2 to mediate visceral fat-liver crosstalk in the context of aging. These findings cast light on how alterations in visceral fat with aging contribute to liver dysfunction and age-related disease etiology.

13.
Proc Natl Acad Sci U S A ; 120(21): e2217119120, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37186819

RESUMO

Occurrence of hyperglycemia upon infection is associated with worse clinical outcome in COVID-19 patients. However, it is still unknown whether SARS-CoV-2 directly triggers hyperglycemia. Herein, we interrogated whether and how SARS-CoV-2 causes hyperglycemia by infecting hepatocytes and increasing glucose production. We performed a retrospective cohort study including patients that were admitted at a hospital with suspicion of COVID-19. Clinical and laboratory data were collected from the chart records and daily blood glucose values were analyzed to test the hypothesis on whether COVID-19 was independently associated with hyperglycemia. Blood glucose was collected from a subgroup of nondiabetic patients to assess pancreatic hormones. Postmortem liver biopsies were collected to assess the presence of SARS-CoV-2 and its transporters in hepatocytes. In human hepatocytes, we studied the mechanistic bases of SARS-CoV-2 entrance and its gluconeogenic effect. SARS-CoV-2 infection was independently associated with hyperglycemia, regardless of diabetic history and beta cell function. We detected replicating viruses in human hepatocytes from postmortem liver biopsies and in primary hepatocytes. We found that SARS-CoV-2 variants infected human hepatocytes in vitro with different susceptibility. SARS-CoV-2 infection in hepatocytes yields the release of new infectious viral particles, though not causing cell damage. We showed that infected hepatocytes increase glucose production and this is associated with induction of PEPCK activity. Furthermore, our results demonstrate that SARS-CoV-2 entry in hepatocytes occurs partially through ACE2- and GRP78-dependent mechanisms. SARS-CoV-2 infects and replicates in hepatocytes and exerts a PEPCK-dependent gluconeogenic effect in these cells that potentially is a key cause of hyperglycemia in infected patients.


Assuntos
COVID-19 , Hiperglicemia , Humanos , COVID-19/complicações , SARS-CoV-2 , Gluconeogênese , Glicemia , Estudos Retrospectivos , Hepatócitos , Hiperglicemia/complicações , Glucose
14.
Gene Ther ; 30(7-8): 598-602, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36482074

RESUMO

Anti-idiotype antibodies have been considered for vaccination approaches against different diseases, including cancers. Based on that, we previously described an anti-bevacizumab idiotype monoclonal antibody, 10.D7, that revealed detectable antitumor effects on a vascular endothelial growth factor (VEGF)-dependent tumor model. Herein, we evaluated the possible applicability of a single-chain variable fragment (scFv) for the 10.D7 antibody in a gene immunization strategy. After checking that mammalian cells transfected to express the 10.D7 scFv are recognized by bevacizumab, it was explored the ability of our scFv construction, in a gene-based scheme, to elicit an immune response containing VEGF-binding antibodies. The results provide evidence that the designed 10.D7 scFv construct maintains the anti-bevacizumab idiotype features and has potential to activate an immune response recognizing VEGF.


Assuntos
Anticorpos de Cadeia Única , Animais , Bevacizumab/uso terapêutico , Anticorpos de Cadeia Única/genética , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Formação de Anticorpos , Imunização , Vacinação , DNA , Mamíferos/genética , Mamíferos/metabolismo
15.
Sci Rep ; 12(1): 17587, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266389

RESUMO

Klotho is an anti-aging protein with several therapeutic roles in the pathophysiology of different organs, such as the skeletal muscle and kidneys. Available evidence suggests that exercise increases Klotho levels, regardless of the condition or intervention, shedding some light on this anti-aging protein as an emergent and promising exerkine. Development of a systematic review and meta-analysis in order to verify the role of different exercise training protocols on the levels of circulating soluble Klotho (S-Klotho) protein. A systematic search of the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE through PubMed, EMBASE, CINAHL, CT.gov, and PEDro. Randomized and quasi-randomized controlled trials that investigated effects of exercise training on S-Klotho levels. We included 12 reports in the analysis, comprising 621 participants with age ranging from 30 to 65 years old. Klotho concentration increased significantly after chronic exercise training (minimum of 12 weeks) (Hedge' g [95%CI] 1.3 [0.69-1.90]; P < 0.0001). Moreover, exercise training increases S-Klotho values regardless of the health condition of the individual or the exercise intervention, with the exception of combined aerobic + resistance training. Furthermore, protocol duration and volume seem to influence S-Klotho concentration, since the effect of the meta-analysis changes when subgrouping these variables. Altogether, circulating S-Klotho protein is altered after chronic exercise training and it might be considered an exerkine. However, this effect may be influenced by different training configurations, including protocol duration, volume, and intensity.


Assuntos
Treinamento Resistido , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Treinamento Resistido/métodos , Exercício Físico/fisiologia , Músculo Esquelético
16.
Nat Commun ; 13(1): 5722, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175400

RESUMO

Visceral adiposity is a risk factor for severe COVID-19, and a link between adipose tissue infection and disease progression has been proposed. Here we demonstrate that SARS-CoV-2 infects human adipose tissue and undergoes productive infection in fat cells. However, susceptibility to infection and the cellular response depends on the anatomical origin of the cells and the viral lineage. Visceral fat cells express more ACE2 and are more susceptible to SARS-CoV-2 infection than their subcutaneous counterparts. SARS-CoV-2 infection leads to inhibition of lipolysis in subcutaneous fat cells, while in visceral fat cells, it results in higher expression of pro-inflammatory cytokines. Viral load and cellular response are attenuated when visceral fat cells are infected with the SARS-CoV-2 gamma variant. A similar degree of cell death occurs 4-days after SARS-CoV-2 infection, regardless of the cell origin or viral lineage. Hence, SARS-CoV-2 infects human fat cells, replicating and altering cell function and viability in a depot- and viral lineage-dependent fashion.


Assuntos
COVID-19 , SARS-CoV-2 , Tecido Adiposo , Enzima de Conversão de Angiotensina 2 , Citocinas , Humanos
17.
Nutrients ; 14(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35807851

RESUMO

Dietary restriction (DR) reduces adiposity and improves metabolism in patients with one or more symptoms of metabolic syndrome. Nonetheless, it remains elusive whether the benefits of DR in humans are mediated by calorie or nutrient restriction. This study was conducted to determine whether isocaloric dietary protein restriction is sufficient to confer the beneficial effects of dietary restriction in patients with metabolic syndrome. We performed a prospective, randomized controlled dietary intervention under constant nutritional and medical supervision. Twenty-one individuals diagnosed with metabolic syndrome were randomly assigned for caloric restriction (CR; n = 11, diet of 5941 ± 686 KJ per day) or isocaloric dietary protein restriction (PR; n = 10, diet of 8409 ± 2360 KJ per day) and followed for 27 days. Like CR, PR promoted weight loss due to a reduction in adiposity, which was associated with reductions in blood glucose, lipid levels, and blood pressure. More strikingly, both CR and PR improved insulin sensitivity by 62.3% and 93.2%, respectively, after treatment. Fecal microbiome diversity was not affected by the interventions. Adipose tissue bulk RNA-Seq data revealed minor changes elicited by the interventions. After PR, terms related to leukocyte proliferation were enriched among the upregulated genes. Protein restriction is sufficient to confer almost the same clinical outcomes as calorie restriction without the need for a reduction in calorie intake. The isocaloric characteristic of the PR intervention makes this approach a more attractive and less drastic dietary strategy in clinical settings and has more significant potential to be used as adjuvant therapy for people with metabolic syndrome.


Assuntos
Síndrome Metabólica , Restrição Calórica , Dieta com Restrição de Proteínas , Proteínas Alimentares , Humanos , Obesidade , Estudos Prospectivos
18.
Front Physiol ; 13: 800094, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35784874

RESUMO

Losses in skeletal muscle mass, strength, and metabolic function are harmful in the pathophysiology of serious diseases, including breast cancer. Physical exercise training is an effective non-pharmacological strategy to improve health and quality of life in patients with breast cancer, mainly through positive effects on skeletal muscle mass, strength, and metabolic function. Emerging evidence has also highlighted the potential of exercise-induced crosstalk between skeletal muscle and cancer cells as one of the mechanisms controlling breast cancer progression. This intercellular communication seems to be mediated by a group of skeletal muscle molecules released in the bloodstream known as myokines. Among the myokines, exercise-induced circulating microRNAs (c-miRNAs) are deemed to mediate the antitumoral effects produced by exercise training through the control of key cellular processes, such as proliferation, metabolism, and signal transduction. However, there are still many open questions regarding the molecular basis of the exercise-induced effects on c-miRNA on human breast cancer cells. Here, we present evidence regarding the effect of exercise training on c-miRNA expression in breast cancer, along with the current gaps in the literature and future perspectives.

19.
Curr Issues Mol Biol ; 45(1): 327-336, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36661509

RESUMO

The COVID-19 (Coronavirus Disease 2019), caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), severely affects mainly individuals with pre-existing comorbidities. Here our aim was to correlate the mTOR (mammalian/mechanistic Target of Rapamycin) and autophagy pathways with the disease severity. Through western blotting and RNA analysis, we found increased mTOR signaling and suppression of genes related to autophagy, lysosome, and vesicle fusion in Vero E6 cells infected with SARS-CoV-2 as well as in transcriptomic data mining of bronchoalveolar epithelial cells from severe COVID-19 patients. Immunofluorescence co-localization assays also indicated that SARS-CoV-2 colocalizes within autophagosomes but not with a lysosomal marker. Our findings indicate that SARS-CoV-2 can benefit from compromised autophagic flux and inhibited exocytosis in individuals with chronic hyperactivation of mTOR signaling.

20.
Exp Biol Med (Maywood) ; 246(23): 2495-2501, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34279137

RESUMO

In this cross-sectional study, we investigate the presence of Severe Acute Respiratory Syndrome Coronavirus 2 Ribonucleic Acid (SARS-CoV-2 RNA) in the tears of hospitalized COVID-19 patients. After laboratory confirmation of SARS-CoV-2 infection by reverse transcription polymerase chain reaction (RT-PCR) analysis, tear samples from both eyes of each patient were collected using conjunctival swab for RT-PCR. Detailed demographic profile, systemic and ocular symptoms, comorbidities, clinical, ancillary, and ocular manifestations were evaluated. Of the 83 patients enrolled in the study, 7 (8.43%) had SARS-CoV-2 RNA detected in the tear samples. Neutrophils' count, C-reactive protein, and D-dimer were higher in patients with SARS-CoV-2 detected in tears than in patients without virus in ocular surface samples. One patient with SARS-CoV-2 in tears showed mild ocular eyelid edema, hyperemia, and chemosis. No relevant ocular manifestations were detected in the other patients. Although the levels of viral RNA on ocular surface samples were low for most patients (5/7), with positivity only for gene N and CT higher than 30, two patients were positive for all viral targets tested (N, E, and RpRd), with viral load near 1 × 105 ePFU/mL, indicating that the ocular transmission of SARS-CoV-2 is a possibility that needs to be considered, especially in the hospital environment. Further studies need to be conducted to demonstrate whether infective viral particles could be isolated from tears.


Assuntos
COVID-19/virologia , Infecções Oculares Virais/virologia , Olho/virologia , SARS-CoV-2/patogenicidade , Adulto , Idoso , Brasil , COVID-19/complicações , COVID-19/patologia , Teste de Ácido Nucleico para COVID-19/estatística & dados numéricos , Infecções Oculares Virais/epidemiologia , Infecções Oculares Virais/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/genética , Lágrimas/virologia , Carga Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA