RESUMO
Membrane bioreactor biofouling is usually described as an extracellular matrix in which biopolymers, inorganic salts and active microbes co-exist. For that reason, biomineralization (BM) models can be useful to describe the spatial organization and environmental constraints within the referred scenario. BM arguments were utilized as background in order to (1) evaluate CaCO(3) influence on flux decline; pore blocking and cake layer properties (resistance, permeability and compressibility) in a wide range of Chitosan/Bovine serum albumin (BSA) mixtures during step-pressure runs and, (2) perform membrane autopsies in order to explore the genesis of mineralized extracellular building blocks (MEBB) during cake layer build up. Using low molecular weight chitosan (LC) and BSA, 2 L of 5 LC/BSA mixtures (0.25-1.85 ratio) were pumped to an external ultra filtration (UF) membrane (23.5cm(2), hydrophobic, piezoelectric, 100kDa as molecular weight cut-off). Eight different pressure steps (40±7 to 540±21kPa) were applied. Each pressure step was held for 900 s. CaCO(3) was added to LC/BSA mixtures at 0.5, 1.5 and 3mM in order to create MEBB during the filtration tests. Membrane autopsies were performed after the filtration tests using thermo gravimetric, scanning microscopy and specific membrane mass (mgcm(-2)) analyses. Biopolymer-CaCO(3) step-pressure filtration created compressible cake layers (with inner voids). The formation of an internal skeleton of MEBB may contribute to irreversible fouling consolidation. A hypothesis for MEBB genesis and development was set forth.
Assuntos
Reatores Biológicos , Carbonato de Cálcio/química , Quitosana/química , Membranas Artificiais , Polissacarídeos Bacterianos/química , Soroalbumina Bovina/química , Incrustação Biológica , Filtração/instrumentação , Modelos Químicos , Estrutura MolecularRESUMO
A technique is presented that can be used to estimate the changes in physical structure in a natural biofilter packing medium, such as compost, over time. The technique applies information from tracer studies, grain size distribution, and pressure drop analysis to a model that estimates the number of channels, average channel diameter, number of particles, and specific surface area of the medium. Important operational factors, such as moisture content, pressure drop, and sulfate accumulation also were evaluated both in a conventionally operated biofilter and in one operated with periodic compost mixing. In the conventionally operated laboratory-scale compost biofilter, hydrogen sulfide (H2S) removal efficiency decreased from 100% to approximately 90% over 206 days of operation. In a similar system, operated with compost mixing, the H2S removal efficiency was maintained near 100%. Variations in media moisture conditions and specific surface area can explain the results observed in this study. Under conventional operation, drying near the inlet disintegrated the compost particles, producing a large number of particles and flow channels and increasing the specific surface area. At the top of the column, where moisture was added, particle size increased and specific surface area decreased. In the column with media mixing, moisture content, particle size, and specific surface area remained homogeneous.