Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Microbiol ; 72(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38014762

RESUMO

Introduction. Lateral flow test (LFTs) have been used as an alternative to reverse transcription quantitative PCR (RT-qPCR) in point-of-care testing. Despite their benefits, the sensitivity of LFTs may be low and is affected by several factors. We have previously reported the feasibility of using direct lysis of individual or pools of saliva samples from symptomatic and asymptomatic patients as a source of viral genomes for detection by RT-qPCR.Hypothesis. Direct lysed saliva is more sensitive than antigen tests to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in samples from children.Aim. Our goals here were to valuate the specificity and sensitivity of the PanBio COVID-19 antigen rapid test device (Ag-RTD) compared with RT-qPCR of direct lysed saliva.Methodology. We evaluated the performance of the PanBio COVID-19 Ag-RTD in comparison to RT-qPCR direct lysed saliva from paired samples of 256 symptomatic and 242 asymptomatic paediatric patients.Results. Overall, although there were no differences in the specificity (96.6%), we found a lower sensitivity (64.3%) of the PanBio Ag-test RTD compared to saliva in both symptomatic and asymptomatic patients. In addition, the sensitivity of PanBio was not correlated with the viral load present in the samples.Conclusion. Our data highlight the benefits of using RT-qPCR and saliva samples for SARS-CoV-2 detection, particularly in paediatric patients.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Criança , SARS-CoV-2/genética , Teste para COVID-19 , Saliva , COVID-19/diagnóstico , Reação em Cadeia da Polimerase , Sensibilidade e Especificidade
2.
Microbiol Spectr ; 10(2): e0224021, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35389245

RESUMO

During the coronavirus disease 2019 (COVID-19) pandemic, the emergence and rapid increase of the B.1.1.7 (Alpha) lineage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), first identified in the United Kingdom in September 2020, was well documented in different areas of the world and became a global public health concern because of its increased transmissibility. The B.1.1.7 lineage was first detected in Mexico during December 2020, showing a slow progressive increase in its circulation frequency, which reached its maximum in May 2021 but never became predominant. In this work, we analyzed the patterns of diversity and distribution of this lineage in Mexico using phylogenetic and haplotype network analyses. Despite the reported increase in transmissibility of the B.1.1.7 lineage, in most Mexican states, it did not displace cocirculating lineages, such as B.1.1.519, which dominated the country from February to May 2021. Our results show that the states with the highest prevalence of B.1.1.7 were those at the Mexico-U.S. border. An apparent pattern of dispersion of this lineage from the northern states of Mexico toward the center or the southeast was observed in the largest transmission chains, indicating possible independent introduction events from the United States. However, other entry points cannot be excluded, as shown by multiple introduction events. Local transmission led to a few successful haplotypes with a localized distribution and specific mutations indicating sustained community transmission. IMPORTANCE The emergence and rapid increase of the B.1.1.7 (Alpha) lineage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) throughout the world were due to its increased transmissibility. However, it did not displace cocirculating lineages in most of Mexico, particularly B.1.1.519, which dominated the country from February to May 2021. In this work, we analyzed the distribution of B.1.1.7 in Mexico using phylogenetic and haplotype network analyses. Our results show that the states with the highest prevalence of B.1.1.7 (around 30%) were those at the Mexico-U.S. border, which also exhibited the highest lineage diversity, indicating possible introduction events from the United States. Also, several haplotypes were identified with a localized distribution and specific mutations, indicating that sustained community transmission occurred in the country.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Genoma Viral , Humanos , México/epidemiologia , Filogenia , SARS-CoV-2/genética
3.
Rev Invest Clin ; 73(6): 339-346, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34292929

RESUMO

BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is a current public health concern. Rapid diagnosis is crucial, and reverse transcription polymerase chain reaction (RT-PCR) is presently the reference standard for SARS-CoV-2 detection. OBJECTIVE: Automated RT-PCR analysis (ARPA) is a software designed to analyze RT-PCR data for SARSCoV-2 detection. ARPA loads the RT-PCR data, classifies each sample by assessing its amplification curve behavior, evaluates the experiment's quality, and generates reports. METHODS: ARPA was implemented in the R language and deployed as a Shiny application. We evaluated the performance of ARPA in 140 samples. The samples were manually classified and automatically analyzed using ARPA. RESULTS: ARPA had a true-positive rate = 1, true-negative rate = 0.98, positive-predictive value = 0.95, and negative-predictive value = 1, with 36 samples correctly classified as positive, 100 samples correctly classified as negative, and two samples classified as positive even when labeled as negative by manual inspection. Two samples were labeled as invalid by ARPA and were not considered in the performance metrics calculation. CONCLUSIONS: ARPA is a sensitive and specific software that facilitates the analysis of RT-PCR data, and its implementation can reduce the time required in the diagnostic pipeline.


Assuntos
COVID-19/diagnóstico , Diagnóstico por Computador , SARS-CoV-2/isolamento & purificação , Software , Teste para COVID-19 , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saliva/virologia
4.
J Clin Microbiol ; 58(10)2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32703816

RESUMO

As part of any plan to lift or ease the confinement restrictions that are in place in many different countries, there is an urgent need to increase the capacity of laboratory testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Detection of the viral genome through reverse transcription-quantitative PCR (RT-qPCR) is the gold standard for this virus; however, the high demand of the materials and reagents needed to sample individuals, purify the viral RNA, and perform the RT-qPCR has resulted in a worldwide shortage of several of these supplies. Here, we show that directly lysed saliva samples can serve as a suitable source for viral RNA detection that is less expensive and can be as efficient as the classical protocol, which involves column purification of the viral RNA. In addition, it bypasses the need for swab sampling, decreases the risk of the health care personnel involved in the testing process, and accelerates the diagnostic procedure.


Assuntos
Betacoronavirus/isolamento & purificação , Saliva/virologia , Manejo de Espécimes/métodos , Betacoronavirus/genética , Teste para COVID-19 , Técnicas de Laboratório Clínico , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/epidemiologia , Testes Diagnósticos de Rotina , Genoma Viral/genética , Humanos , Nasofaringe/virologia , Orofaringe/virologia , RNA Viral/genética , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , SARS-CoV-2 , Carga Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA