RESUMO
BACKGROUND: Animal poisons and venoms are sources of biomolecules naturally selected. Rhinella schneideri toads are widespread in the whole Brazilian territory and they have poison glands and mucous gland. Recently, protein from toads' secretion has gaining attention. Frog skin is widely known to present great number of host defense peptides and we hypothesize toads present them as well. In this study, we used a RNA-seq analysis from R. schneideri skin and biochemical tests with the gland secretion to unravel its protein molecules. METHODS: Total RNA from the toad skin was extracted using TRizol reagent, sequenced in duplicate using Illumina Hiseq2500 in paired end analysis. The raw reads were trimmed and de novo assembled using Trinity. The resulting sequences were submitted to functional annotation against non-redundant NCBI database and Database of Anuran Defense Peptide. Furthermore, we performed caseinolytic activity test to assess the presence of serine and metalloproteases in skin secretion and it was fractionated by fast liquid protein chromatography using a reverse-phase column. The fractions were partially sequenced by Edman's degradation. RESULTS: We were able to identify several classes of antimicrobial peptides, such as buforins, peroniins and brevinins, as well as PLA2, lectins and galectins, combining protein sequencing and RNA-seq analysis for the first time. In addition, we could isolate a PLA2 from the skin secretion and infer the presence of serine proteases in cutaneous secretion. CONCLUSIONS: We identified novel toxins and proteins from R. schneideri mucous glands. Besides, this is a pioneer study that presented the in depth characterization of protein molecules richness from this toad secretion. The results obtained herein showed evidence of novel AMP and enzymes that need to be further explored.
RESUMO
Background: Animal poisons and venoms are sources of biomolecules naturally selected. Rhinella schneideri toads are widespread in the whole Brazilian territory and they have poison glands and mucous gland. Recently, protein from toads secretion has gaining attention. Frog skin is widely known to present great number of host defense peptides and we hypothesize toads present them as well. In this study, we used a RNA-seq analysis from R. schneideri skin and biochemical tests with the gland secretion to unravel its protein molecules. Methods: Total RNA from the toad skin was extracted using TRizol reagent, sequenced in duplicate using Illumina Hiseq2500 in paired end analysis. The raw reads were trimmed and de novo assembled using Trinity. The resulting sequences were submitted to functional annotation against non-redundant NCBI database and Database of Anuran Defense Peptide. Furthermore, we performed caseinolytic activity test to assess the presence of serine and metalloproteases in skin secretion and it was fractionated by fast liquid protein chromatography using a reverse-phase column. The fractions were partially sequenced by Edman's degradation. Results: We were able to identify several classes of antimicrobial peptides, such as buforins, peroniins and brevinins, as well as PLA2, lectins and galectins, combining protein sequencing and RNA-seq analysis for the first time. In addition, we could isolate a PLA2 from the skin secretion and infer the presence of serine proteases in cutaneous secretion. Conclusions: We identified novel toxins and proteins from R. schneideri mucous glands. Besides, this is a pioneer study that presented the in depth characterization of protein molecules richness from this toad secretion. The results obtained herein showed evidence of novel AMP and enzymes that need to be further explored.(AU)
Assuntos
Animais , Bufonidae , Venenos de Anfíbios/análise , Venenos de Anfíbios/sangue , Venenos de Anfíbios/genética , Secreções Corporais/química , Sequência de Bases , TranscriptomaRESUMO
Snake venoms are complex mixtures mainly composed of proteins and small peptides. Crotoxin is one of the most studied components from Crotalus venoms, but many other components are less known due to their low abundance. The venome of Crotalus durissus terrificus, the most lethal Brazilian snake, was investigated by combining its venom gland transcriptome and proteome to create a holistic database of venom compounds unraveling novel toxins. We constructed a cDNA library from C. d. terrificus venom gland using the Illumina platform and investigated its venom proteome through high resolution liquid chromotography-tandem mass spectrometry. After integrating data from both data sets, more than 30 venom components classes were identified by the transcriptomic analysis and 15 of them were detected in the venom proteome. However, few of them (PLA2, SVMP, SVSP, and VEGF) were relatively abundant. Furthermore, only seven expressed transcripts contributed to â¼82% and â¼73% of the abundance in the transcriptome and proteome, respectively. Additionally, novel venom proteins are reported, and we highlight the importance of using different databases to perform the data integration and discuss the structure of the venom components-related transcripts identified. Concluding, this research paves the way for novel investigations and discovery of future pharmacological agents or targets in the antivenom therapy.
Assuntos
Venenos de Crotalídeos/química , Crotalus/fisiologia , Proteoma/isolamento & purificação , Transcriptoma , Sequência de Aminoácidos , Animais , Carboxipeptidases/genética , Carboxipeptidases/isolamento & purificação , Carboxipeptidases/metabolismo , Cromatografia Líquida/métodos , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/isolamento & purificação , Fatores de Crescimento de Fibroblastos/metabolismo , Expressão Gênica , Biblioteca Gênica , Ontologia Genética , Hialuronoglucosaminidase/genética , Hialuronoglucosaminidase/isolamento & purificação , Hialuronoglucosaminidase/metabolismo , Anotação de Sequência Molecular , Proteoma/genética , Proteoma/metabolismo , Alinhamento de Sequência , Análise de Sequência de RNA , Espectrometria de Massas em Tandem/métodosRESUMO
Animal poisons and venoms are sources of biomolecules naturally selected. Rhinella schneideri toads are widespread in the whole Brazilian territory and they have poison glands and mucous gland. Recently, protein from toads' secretion has gaining attention. Frog skin is widely known to present great number of host defense peptides and we hypothesize toads present them as well. In this study, we used a RNA-seq analysis from R. schneideri skin and biochemical tests with the gland secretion to unravel its protein molecules. Methods: Total RNA from the toad skin was extracted using TRizol reagent, sequenced in duplicate using Illumina Hiseq2500 in paired end analysis. The raw reads were trimmed and de novo assembled using Trinity. The resulting sequences were submitted to functional annotation against non-redundant NCBI database and Database of Anuran Defense Peptide. Furthermore, we performed caseinolytic activity test to assess the presence of serine and metalloproteases in skin secretion and it was fractionated by fast liquid protein chromatography using a reverse-phase column. The fractions were partially sequenced by Edman's degradation. Results: We were able to identify several classes of antimicrobial peptides, such as buforins, peroniins and brevinins, as well as PLA2, lectins and galectins, combining protein sequencing and RNA-seq analysis for the first time. In addition, we could isolate a PLA2 from the skin secretion and infer the presence of serine proteases in cutaneous secretion. Conclusions: We identified novel toxins and proteins from R. schneideri mucous glands. Besides, this is a pioneer study that presented the in depth characterization of protein molecules richness from this toad secretion. The results obtained herein showed evidence of novel AMP and enzymes that need to be further explored.(AU)
Assuntos
Anuros/fisiologia , Venenos , Metaloproteases , Serina Proteases , Secreções Corporais , Análise de Sequência de ProteínaRESUMO
The aim of this study was to perform a proteomic analysis to isolate and identify proteins from the swine sperm nuclear matrix to contribute to a database of swine sperm nuclear proteins. We used pre-chilled diluted semen from seven boars (19 to 24 week old) from the commercial lineLandrace x Large Whitex Pietran. The semen was processed to separate the sperm heads and extract the chromatin and nuclear matrix for protein quantification and analysis by mass spectrometry, by LTQ Orbitrap ELITE Mass spectrometer (Thermo-Finnigan) coupled to a nanoflow chromatography system (LC-MS/MS). We identified 222 different proteins in the sample; a total of 159 (71.6%) were previously described as present in the somatic or sperm nuclei of other species, 41 (18.5%) did not have a previously reported nuclear presence and 22(9.9%) had not been characterized. The most abundant family of proteins corresponded to ribosomal (13.1%), followed by cytoskeleton (12.2%), uncharacterized (9.9%), histones (5.4%), proteasome subunits (3.6%)and heat shock (1.8%). The other proteins clustered in other families accounted for 54% of the total proteins. The protein isolation of the nuclear matrix of the swine spermatozoa was satisfactory, thus demonstrating that the protocol used was efficient. Several proteins were identified and described. However, it was not possible to identify some protein structures. Therefore,this study helps to establish a starting point for future proteomic studies comparing fertile and sub-fertile animals.
Assuntos
Masculino , Animais , Análise do Sêmen/veterinária , Cromatina/classificação , Cromatina/isolamento & purificação , Matriz Nuclear , SuínosRESUMO
The aim of this study was to perform a proteomic analysis to isolate and identify proteins from the swine sperm nuclear matrix to contribute to a database of swine sperm nuclear proteins. We used pre-chilled diluted semen from seven boars (19 to 24 week old) from the commercial lineLandrace x Large Whitex Pietran. The semen was processed to separate the sperm heads and extract the chromatin and nuclear matrix for protein quantification and analysis by mass spectrometry, by LTQ Orbitrap ELITE Mass spectrometer (Thermo-Finnigan) coupled to a nanoflow chromatography system (LC-MS/MS). We identified 222 different proteins in the sample; a total of 159 (71.6%) were previously described as present in the somatic or sperm nuclei of other species, 41 (18.5%) did not have a previously reported nuclear presence and 22(9.9%) had not been characterized. The most abundant family of proteins corresponded to ribosomal (13.1%), followed by cytoskeleton (12.2%), uncharacterized (9.9%), histones (5.4%), proteasome subunits (3.6%)and heat shock (1.8%). The other proteins clustered in other families accounted for 54% of the total proteins. The protein isolation of the nuclear matrix of the swine spermatozoa was satisfactory, thus demonstrating that the protocol used was efficient. Several proteins were identified and described. However, it was not possible to identify some protein structures. Therefore,this study helps to establish a starting point for future proteomic studies comparing fertile and sub-fertile animals.(AU)