Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 8: e8790, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32292646

RESUMO

Mexico has more than 750,000 ha of mangroves and more than 400,000 ha of seagrasses. However, approximately 200,000 ha of mangroves and an unknown area of seagrass have been lost due to coastal development associated with urban, industrial and tourist purposes. In 2018, the approved reforms to the General Law on Climate Change (LGCC) aligned the Mexican law with the international objectives established in the 2nd Article of the Paris Agreement. This action proves Mexico's commitment to contributing to the global target of stabilizing the greenhouse gas emissions concentration in the planet. Thus, restoring and conserving mangrove and seagrass habitats could contribute to fulfilling this commitment. Therefore, as a first step in establishing a mitigation and adaptation plan against climate change with respect to conservation and restoration actions of these ecosystems, we evaluated Mexican blue carbon ecosystems through a systematic review of the carbon stock using the standardized method of Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). We used the data from 126 eligible studies for both ecosystems (n = 1220). The results indicated that information is missing at the regional level. However, the average above and below ground organic carbon stocks from mangroves in Mexico is 113.6 ± 5.5 (95% CI [99.3-118.4]) Mg Corg ha-1 and 385.1 ± 22 (95% CI [344.5-431.9]) Mg Corg ha-1, respectively. The variability in the Corg stocks for both blue carbon ecosystems in Mexico is related to variations in climate, hydrology and geomorphology observed along the country's coasts in addition to the size and number of plots evaluated with respect to the spatial cover. The highest values for mangroves were related to humid climate conditions, although in the case of seagrasses, they were related to low levels of hydrodynamic stress. Based on the official extent of mangrove and seagrass area in Mexico, we estimate a total carbon stock of 237.7 Tg Corg from mangroves and 48.1 Tg Corg from seagrasses. However, mangroves and seagrasses are still being lost due to land use change despite Mexican laws meant to incorporate environmental compensation. Such losses are largely due to loopholes in the legal framework that dilute the laws' effectiveness and thus ability to protect the ecosystem. The estimated emissions from land use change under a conservative approach in mangroves of Mexico were approximately 24 Tg CO2e in the last 20 years. Therefore, the incorporation of blue carbon into the carbon market as a viable source of supplemental finance for mangrove and seagrass protection is an attractive win-win opportunity.

2.
Mar Pollut Bull ; 59(1-3): 72-86, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19157464

RESUMO

The coastal environment of the Yucatan Peninsula (SE, Mexico) includes a wide variety of ecosystems ranging from mangroves to coral reefs, resulting in a heterogeneous landscape. Specifically, the marine system is characterized by environmental differences which respond to regional and local forcing functions such as marine currents and groundwater discharges (GD). Such functional characteristics were used here to define four subregions across the Yucatan coast and diagnose the health status of this coastal marine ecosystem. To achieve this goal, we conducted an analysis and integration of water quality variables, an eutrophic assessment, evaluated changes in submerged aquatic vegetation (SAV), and analyzed the community structure and distribution of harmful phytoplankton. The first step was to determine the reference values for each subregion based on data previously collected from 2002 to 2006 along the coast of Yucatan, 200m offshore. The trophic index (TRIX) and Canadian index for aquatic life (CCMEWQI) were used to diagnose each subregion and then the ASSETS approach was conducted for Dzilam and Progreso, sampling localities on each end of the health status continuum (those with the best and worst conditions). Overall, results indicated that the marine coastal ecosystem of Yucatan is in good condition; however, differences were observed between subregions that can be attributed to local forcing functions and human impacts. Specifically, the central region (zone HZII, Progreso-Telchac) showed symptoms of initial eutrophication due to nutrient inputs from human activities. The eastern region (zone HZ III, Dzilam-Las Bocas) showed a meso-eutrophic condition linked to natural groundwater discharges, while the other two subregions western (zone HZI Celestun-Palmar) and caribbean (zone HZ IV Ria Lagartos-El Cuyo) exhibited symptoms of oligo-mesotrophic condition. These findings may be considered baseline information for coastal ecosystem monitoring programs in Yucatan, and the approach used could be replicated for other coastal areas.


Assuntos
Ecossistema , Monitoramento Ambiental , Eucariotos/fisiologia , Fitoplâncton/fisiologia , Poaceae/fisiologia , Água do Mar/química , Indexação e Redação de Resumos , Conservação dos Recursos Naturais , Eutrofização , México , Valores de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA