Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(7): e0270935, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35905097

RESUMO

Induced mutagenesis through gamma radiation generates structural and chemical changes in plants. This study evaluated the morphological and nutritional variability of natal grass [Melinis repens (Willd.) Zizka] plants produced from seed irradiated with gamma radiation. Natal grass seed was collected from wild populations in the state of Chihuahua, Mexico. The seed was exposed to a source of Co60. The radiation doses were: 0, 10, 50, 100, 150, 200, 250, 300 and 350 Gray (Gy). Sixty-six first generation mutant genotypes (M1), produced from irradiated seed, and nine non-mutant genotypes (M0), developed from non-irradiated seed (0 Gy), were evaluated. For the morphological characterization, 18 variables were measured on the plants when they were at the reproductive stage. The nutritional analysis was performed on the M0, as well as on a group of plants from the M1, which resulted morphologically different (p <0.005) from the rest. The differenced M1 plants were classified as promising mutant genotypes (M1p). Results showed that variability was induced in the M1p. These individuals presented morphological differences in leaf weight-tillering weight ratio and foliage height, compared to the rest of the plants (p <0.001). The M1p 250-10 genotype presented the highest (p <0.001) crude protein and the lowest (p <0.001) lignin contents. Gamma radiation in the seed of natal grass induced morphological and nutritional variability. With that, promising mutant genotypes, with desirable morphological and nutritional attributes, were identified.


Assuntos
Melinis repens , Sementes , Raios gama , Humanos , México , Folhas de Planta/genética , Folhas de Planta/metabolismo , Sementes/genética
2.
Plants (Basel) ; 11(5)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35270154

RESUMO

Understanding the genetic structure adopted by natural populations and its relation to environmental adaptation is critical for the success of restoration programs. We evaluated the genetic structure and temporal environmental niche dynamics of blue grama (Bouteloua gracilis) in 48 populations. The genetic evaluation was performed through amplified fragment length polymorphism (AFLP) molecular markers. The maximum entropy method was used to model the past, present, and future environmental niches of the three clusters derived from the genetic analysis. The environmental niches of the three genetic clusters showed dynamic overlaps and isolations during the last interglacial and glacial maximum. The paleoclimatic events, which occurred during those periods, may have reinforced genetic exchange among populations and affected their genetic structure. Genetic clusters also presented different environmental niches in the present. Thus, they can be considered as three distinct ecotypes and restoration programs must be carried out using local germplasm from each environmental niche to increase their chance of success. Based on the environmental niches of the genetic clusters, changes are expected in the near and mid-century future. Therefore, climate change must be considered for species conservation management and future restoration programs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA