Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Aquat Toxicol ; 246: 106148, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35364510

RESUMO

Saxitoxin (STX) is a neurotoxic cyanotoxin that also generate reactive oxygen species, leading to a situation of oxidative stress and altered metabolism. The Amazonian fruit açaí Euterpe oleracea possesses a high concentration of antioxidant molecules, a fact that prompted us to evaluate its chemoprotection activity against STX toxicity (obtained from samples of Trichodesmium sp. collected in the environment) in the shrimp Litopenaeus vannamei. For 30 days, shrimps were maintained in 16 aquaria containing 10 shrimps (15% salinity, pH 8.0, 24 °C, 12C/12D photoperiod) and fed twice daily with a diet supplemented with lyophilized açaí pulp (10%), in addition to the control diet. After, shrimps (7.21 ± 0.04 g) were exposed to the toxin added to the feed for 96 h. Four treatments were defined: CTR (control diet), T (lyophilized powder of Trichodesmium sp. 0.8 µg/g), A (10% of açaí) and the combination T + A. HPLC analysis showed predominance of gonyautoxin-1 concentrations (GTX-1) and gonyautoxin-4 concentrations (GTX-4). The results of molecular docking simulations indicated that all variants of STX, including GTX-1, can be a substrate of isoform mu of the glutathione-S-transferase (GST) enzyme since these molecules obtained similar values of estimated Free Energy of Binding (FEB), as well as similar final positions on the binding site. GSH levels were reduced in muscle tissues of shrimp in the T, A, and T + A treatments. Increased GST activity was observed in shrimp hepatopancreas of the T treatment and the gills of the A and T + A treatments. A decrease of protein sulfhydryl groups (P-SH) was observed in gills of shrimps from T + A treatment. A reduction in malondialdehyde (MDA) levels was registered in the hepatopancreas of the T + A treatment in respect to the Control, T, and A treatments. The use of açaí supplements in L. vannamei feed was able to partially mitigate the toxic effects caused by Trichodesmium sp. extracts, and points to mu GST isoform as a key enzyme for saxitoxin detoxification in L. vannamei, an issue that deserves further investigation.


Assuntos
Euterpe , Penaeidae , Poluentes Químicos da Água , Animais , Euterpe/química , Simulação de Acoplamento Molecular , Saxitoxina/toxicidade , Poluentes Químicos da Água/toxicidade
2.
Mar Biotechnol (NY) ; 23(6): 881-891, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34714442

RESUMO

The animals from bycatch of the shrimp fisheries can be a source of natural products and bioactive compounds. Thus, the present study aimed to evaluate the bioactivity of protein hydrolysates prepared from the two most abundant crabs from the bycatch of shrimp fisheries in Brazil (Callinectes ornatus and Hepatus pudibundus). Samples of C. ornatus and H. pudibundus were collected in the region of Ubatuba, State of São Paulo, Brazil. Muscles with small pieces of exoskeleton of both species were hydrolyzed using two enzymes, Alcalase 2.4 L® or Protamex®. The in vitro antioxidant capacity was analyzed used three methods: DPPH, sulfhydryl groups, and peroxyl radicals. Additionally, the cytotoxicity of the hydrolysates was investigated using pre-osteoblasts cells. The results showed that the degree of hydrolysis (DH) of H. pudibundus was superior to DH of C. ornatus using both enzymes and was higher when using the enzyme Alcalase 2.4 L® (32.0% ± 1.9). The analysis suggested that the hydrolysates have antioxidant activity. Besides that, no cytotoxic effect was observed on cell viability. Thus, protein hydrolysates of C. ornatus and H. pudibundus have bioactivity, which add value to these bycatch species and suggests their potential use as nutraceutical ingredient in the food industry.


Assuntos
Hidrolisados de Proteína , Alimentos Marinhos , Animais , Antioxidantes/farmacologia , Brasil , Pesqueiros , Hidrólise , Hidrolisados de Proteína/química
3.
Fish Physiol Biochem ; 47(6): 1851-1864, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34562200

RESUMO

The Amazonian açai fruit (Euterpe oleracea) has shown promising anticonvulsant properties, comparable to those of diazepam (BDZ) in in vivo models submitted to pentylenetetrazole (PTZ). PTZ is a classic convulsant agent used in studies for the purpose of screening anticonvulsants and investigating the mechanisms of epilepsy. Herein, we aimed to determine, for the first time, the effect of dietary administration of lyophilized E. oleracea (LEO) on PTZ-induced seizures, using juvenile Colossoma macropomum fish (9.1 ± 1.5 g) as a model. A control diet (0.00% LEO) and two levels of LEO inclusion were established: 5.00% and 10.0% LEO (w/w). Fish were divided into five groups (n = 5): control (0.9% physiological solution; i.p.), PTZ (PTZ 150 mg kg-1; i.p.), PTZ LEO 5.00%, PTZ LEO 10.0%, and BDZ-PTZ (BDZ: diazepam 10 mg kg-1; i.p.). In addition to the electroencephalography (EEG), the lipid peroxidation (TBARS) was quantified in the brain, along with the characterization of behavioral responses. Fish receiving PTZ showed intense action potential bursts (APB), which overlapped with a hyperactive behavior. In PTZ LEO 5.00% and 10.0% groups, convulsive behavior was significantly reduced compared to the PTZ group. Fish fed 5.00% or 10.0% LEO and exposed to PTZ showed less excitability and lower mean amplitude in tracings. The inclusion of 10.0% LEO in the diet prevented the increase in mean amplitude of the EEG waves by 80%, without significant differences to the quantified mean amplitude of the BDZ-PTZ group. TBARS concentration was reduced by 60% in the brain of fish fed 10.0% LEO-enriched diets relative to the PTZ-administered group. The results of this study demonstrated the anticonvulsant and protective roles of LEO to the brain, and the dietary inclusion of LEO seems to be promising for the formulation of functional diets. Results of this study may boost the interest on the anti-seizurogenic properties of Euterpe oleracea, including the development of new approaches for the prevention of seizures in humans and animals with low epileptic threshold.


Assuntos
Anticonvulsivantes/uso terapêutico , Encéfalo/efeitos dos fármacos , Caraciformes , Euterpe , Convulsões , Animais , Diazepam/uso terapêutico , Dieta/veterinária , Euterpe/química , Peroxidação de Lipídeos , Pentilenotetrazol , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Convulsões/veterinária , Substâncias Reativas com Ácido Tiobarbitúrico
4.
Environ Sci Pollut Res Int ; 27(25): 30945-30956, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31808098

RESUMO

Carbon nanomaterials (CNM), such as graphene oxide (GO), have been the focus of study in several areas of science mostly due to their physical-chemical properties. However, data concerning the potential toxic effects of these CNM in bivalves are still scarce. When present in the aquatic systems, the combination with other contaminants, as well as pH environmental variations, can influence the behavior of these nanomaterials and, consequently, their toxicity. Thus, the main goal of this study was to evaluate the effect of exposure of clam Ruditapes philippinarum to GO when acting alone and in the combination with copper (Cu), under two pH levels (control 7.8 and 7.3). A 28-day exposure was performed and metabolism and oxidative stress-related parameters were evaluated. The effects caused by GO and Cu exposures, either isolated or co-exposed, showed a direct and dependent relationship with the pH in which the organisms were exposed. In clams maintained at control pH (7.8), Cu and GO + Cu treatments showed lower lipid peroxidation (LPO) and lower electron transport system (ETS) activity, respectively. In clams maintained at low pH, glutathione-S-transferases (GSTs) activities were increased in Cu and Cu + GO treatments, whereas reduced glutathione (GSH) levels were increased in Cu treatment and ETS activity was higher in GO + Cu. Thus, it can be observed that clams responses to Cu and GO were strongly modulated by pH in terms of their defense system and energy production, although this does not result into higher LPO levels.


Assuntos
Bivalves , Poluentes Químicos da Água/análise , Animais , Cobre , Grafite , Concentração de Íons de Hidrogênio
5.
Brain Struct Funct ; 224(9): 3019-3029, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31654118

RESUMO

Topographical organization can be found in many areas of the cerebral cortex, although its presence in higher order cortices is debated. Some studies evaluated whether this pattern of organization is present in the hippocampus, trying to determine whether hippocampal place cells are organized around a topographical map of space. Those studies indicated that the topographical organization of hippocampal place cells is either very limited or simply nonexistent. In this paper, we argue for a different interpretation of available evidence and suggest that there is a topographical organization in hippocampal place cells, but the topographical map formed is not a map of the physical space. Although place cell firing is correlated with the animal's position and is important to spatial navigation, place cells encode much more information than just location. Thus, we should not expect the topographical map to be organized around physical space, but around an abstract, multidimensional space containing the receptive fields of place cells. We show that this conclusion is supported by two of the main theories of hippocampal function-cognitive map theory and index theory-which, when carefully analyzed, make exactly the same predictions about hippocampal topography. Such abstract topographical map would be extremely hard to find using the methods commonly employed in the literature, but there are some approaches that may, in the future, make possible to characterize the topographical organization in the hippocampus and other high-order brain regions.


Assuntos
Hipocampo/fisiologia , Modelos Neurológicos , Células de Lugar/fisiologia , Animais , Humanos , Memória/fisiologia , Percepção Espacial/fisiologia , Navegação Espacial/fisiologia
6.
Bioessays ; 41(5): e1900035, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30997694

RESUMO

This paper discusses how our bad reading habits are starting to influence how we write. This short abstract and the picture next to it summarize the arguments in this paper. Just kidding, they do not. One really needs to read the paper for that.


Assuntos
Leitura , Redação
7.
Bioessays ; 41(1): e1800206, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30485465

RESUMO

The overflow of scientific literature stimulates poor reading habits which can aggravate science's reproducibility crisis. Thus, solving the reproducibility crisis demands not only methodological changes, but also changes in our relationship with the scientific literature, especially our reading habits. Importantly, this does not mean reading more, it means reading better.


Assuntos
Leitura , Reprodutibilidade dos Testes , Pesquisa
8.
Bioessays ; 40(11): e800068, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30176065

RESUMO

In recent years there has been a wealth of studies investigating how memories are allocated in the hippocampus. Some of those studies showed that it is possible to manipulate the identity of neurons recruited to represent a given memory without affecting the memory's behavioral expression. Those findings raised questions about how the hippocampus represents memories, with some researchers arguing that hippocampal neurons do not represent fixed stimuli. Herein, an alternative hypothesis is argued. Neurons in high-order brain regions can be tuned to multiple dimensions, forming complex, abstract representations. It is argued that such complex receptive fields allow those neurons to show some flexibility in their responses while still representing relatively fixed sets of stimuli. Moreover, it is pointed out that changes induced by artificial manipulation of cell assemblies are not completely redundant-the observed behavioral redundancy does not imply cognitive redundancy, as different, but similar, memories may induce the same behavior.


Assuntos
Cognição/fisiologia , Hipocampo/fisiologia , Memória Episódica , Memória/fisiologia , Animais , Humanos , Neurônios/fisiologia
9.
Nanomaterials (Basel) ; 7(11)2017 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-29137126

RESUMO

This study presents the impact of carbon nanotubes (CNTs) on mitochondrial oxygen mass flux (Jm) under three experimental conditions. New experimental results and a new methodology are reported for the first time and they are based on CNT Raman spectra star graph transform (spectral moments) and perturbation theory. The experimental measures of Jm showed that no tested CNT family can inhibit the oxygen consumption profiles of mitochondria. The best model for the prediction of Jm for other CNTs was provided by random forest using eight features, obtaining test R-squared (R²) of 0.863 and test root-mean-square error (RMSE) of 0.0461. The results demonstrate the capability of encoding CNT information into spectral moments of the Raman star graphs (SG) transform with a potential applicability as predictive tools in nanotechnology and material risk assessments.

10.
Sci Rep ; 7(1): 13271, 2017 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-29038520

RESUMO

The current molecular docking study provided the Free Energy of Binding (FEB) for the interaction (nanotoxicity) between VDAC mitochondrial channels of three species (VDAC1-Mus musculus, VDAC1-Homo sapiens, VDAC2-Danio rerio) with SWCNT-H, SWCNT-OH, SWCNT-COOH carbon nanotubes. The general results showed that the FEB values were statistically more negative (p < 0.05) in the following order: (SWCNT-VDAC2-Danio rerio) > (SWCNT-VDAC1-Mus musculus) > (SWCNT-VDAC1-Homo sapiens) > (ATP-VDAC). More negative FEB values for SWCNT-COOH and OH were found in VDAC2-Danio rerio when compared with VDAC1-Mus musculus and VDAC1-Homo sapiens (p < 0.05). In addition, a significant correlation (0.66 > r2 > 0.97) was observed between n-Hamada index and VDAC nanotoxicity (or FEB) for the zigzag topologies of SWCNT-COOH and SWCNT-OH. Predictive Nanoparticles-Quantitative-Structure Binding-Relationship models (nano-QSBR) for strong and weak SWCNT-VDAC docking interactions were performed using Perturbation Theory, regression and classification models. Thus, 405 SWCNT-VDAC interactions were predicted using a nano-PT-QSBR classifications model with high accuracy, specificity, and sensitivity (73-98%) in training and validation series, and a maximum AUROC value of 0.978. In addition, the best regression model was obtained with Random Forest (R2 of 0.833, RMSE of 0.0844), suggesting an excellent potential to predict SWCNT-VDAC channel nanotoxicity. All study data are available at https://doi.org/10.6084/m9.figshare.4802320.v2 .


Assuntos
Nanotubos de Carbono/química , Humanos , Mitocôndrias/química , Mitocôndrias/metabolismo , Simulação de Acoplamento Molecular , Canal de Ânion 1 Dependente de Voltagem/química , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Canal de Ânion 2 Dependente de Voltagem/química , Canal de Ânion 2 Dependente de Voltagem/metabolismo , Canais de Ânion Dependentes de Voltagem/química , Canais de Ânion Dependentes de Voltagem/metabolismo
11.
An Acad Bras Cienc ; 89(3 Suppl): 2209-2218, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28746612

RESUMO

The present study aimed to evaluate the effects of benzocaine and tricaine methanesulfonate on oxidative stress parameters of juvenile tambaqui tissues. Fish (n=80) were anesthetized with benzocaine (100 mg L-1) or tricaine (240 mg L-1) and two control groups were used (non-anesthetized fish and fish exposed to ethanol-only). After anesthetic induction 10 fish/anesthetic were euthanized after 3, 12 and 24 hours post-anesthesia and tissue samplings (gills, liver and brain) were performed. Samples were submitted to analyses of enzyme activity glutathione-S-transferase (GST), cellular lipid peroxidation (TBARS) and total antioxidant capacity (ACAP). ACAP increased in gills of benzocaine treatment after 12 hours. The liver showed a reduction in ACAP of tricaine treatment after 12 hours. Both anesthetic treatments showed an increase of ACAP at 24 hours compared to control group. The activity of the GST enzyme increased in the gills for treatments benzocaine and tricaine after 3 and 12 hours. Liver showed increased GST activity (benzocaine after 24 hours and tricaine after 3 and 24 hours). Lipid damage decreased in gills (both anesthetics) and brain (tricaine) after 24 hours. The results demonstrate that benzocaine and tricaine did not cause oxidative damage in juvenile tambaqui under the experimental conditions herein established.


Assuntos
Aminobenzoatos/farmacologia , Anestésicos/farmacologia , Benzocaína/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Anestésicos/administração & dosagem , Animais , Encéfalo/efeitos dos fármacos , Peixes , Brânquias/efeitos dos fármacos , Fígado/efeitos dos fármacos
12.
Hippocampus ; 27(9): 937-950, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28597491

RESUMO

The generation of new neurons in the hippocampus of adult mammals has become a widely accepted phenomenon, but the functional significance of the adult neurogenesis in the hippocampus is not fully understood. One of the main hypotheses currently investigated suggests that neurogenesis contributes to pattern separation in the dentate gyrus. Many behavioral studies were conducted aiming to test this hypothesis using rodents as animal model. In those studies, researches ablated neurogenesis in the animals and subsequently evaluate them in tests of behavioral pattern separation, that is, behaviors that are thought to rely on the computational process of pattern separation. The results of these studies are varied, with most supporting a role for neurogenesis in pattern separation, but some others not. To address this controversy we performed a systematic review and meta-analysis of studies evaluating the effect of neurogenesis ablation on behavioral pattern separation. Analysis results indicated that most of the literature in the topic is surprisingly consistent and, although there are two studies with divergent results, the bulk of the literature supports an effect of hippocampal neurogenesis on behavioral pattern separation. We discuss those findings in light of other behavioral effects of hippocampal neurogenesis ablation, limitations of behavioral data and other lines of evidence about the effect of hippocampal neurogenesis in the dentate gyrus.


Assuntos
Hipocampo/citologia , Hipocampo/fisiologia , Neurogênese/fisiologia , Neurônios/fisiologia , Animais , Bases de Dados Bibliográficas/estatística & dados numéricos , Humanos
13.
An. acad. bras. ciênc ; 89(3,supl): 2209-2218, 2017. graf
Artigo em Inglês | LILACS | ID: biblio-886809

RESUMO

ABSTRACT The present study aimed to evaluate the effects of benzocaine and tricaine methanesulfonate on oxidative stress parameters of juvenile tambaqui tissues. Fish (n=80) were anesthetized with benzocaine (100 mg L-1) or tricaine (240 mg L-1) and two control groups were used (non-anesthetized fish and fish exposed to ethanol-only). After anesthetic induction 10 fish/anesthetic were euthanized after 3, 12 and 24 hours post-anesthesia and tissue samplings (gills, liver and brain) were performed. Samples were submitted to analyses of enzyme activity glutathione-S-transferase (GST), cellular lipid peroxidation (TBARS) and total antioxidant capacity (ACAP). ACAP increased in gills of benzocaine treatment after 12 hours. The liver showed a reduction in ACAP of tricaine treatment after 12 hours. Both anesthetic treatments showed an increase of ACAP at 24 hours compared to control group. The activity of the GST enzyme increased in the gills for treatments benzocaine and tricaine after 3 and 12 hours. Liver showed increased GST activity (benzocaine after 24 hours and tricaine after 3 and 24 hours). Lipid damage decreased in gills (both anesthetics) and brain (tricaine) after 24 hours. The results demonstrate that benzocaine and tricaine did not cause oxidative damage in juvenile tambaqui under the experimental conditions herein established.


Assuntos
Animais , Benzocaína/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Aminobenzoatos/farmacologia , Anestésicos/farmacologia , Encéfalo/efeitos dos fármacos , Peixes , Brânquias/efeitos dos fármacos , Anestésicos/administração & dosagem , Fígado/efeitos dos fármacos
14.
PLoS One ; 10(6): e0129156, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26075787

RESUMO

Carbon nanotubes are promising nanomaterials for the diagnosis and treatment of brain disorders. However, the ability of these nanomaterials to cross cell membranes and interact with neural cells brings the need for the assessment of their potential adverse effects on the nervous system. This study aimed to investigate the biopersistence of single-walled carbon nanotubes functionalized with polyethylene glycol (SWCNT-PEG) directly infused into the rat hippocampus. Contextual fear conditioning, Y-maze and open field tasks were performed to evaluate the effects of SWCNT-PEG on memory and locomotor activity. The effects of SWCNT-PEG on oxidative stress and morphology of the hippocampus were assessed 1 and 7 days after infusion of the dispersions at 0.5, 1.0 and 2.1 mg/mL. Raman analysis of the hippocampal homogenates indicates the biopersistence of SWCNT-PEG in the hippocampus 7 days post-injection. The infusion of the dispersions had no effect on the acquisition or persistence of the contextual fear memory; likewise, the spatial recognition memory and locomotor activity were not affected by SWCNT-PEG. Histological examination revealed no remarkable morphological alterations after nanomaterial exposure. One day after the infusion, SWCNT-PEG dispersions at 0.5 and 1.0 mg/mL were able to decrease total antioxidant capacity without modifying the levels of reactive oxygen species or lipid hydroperoxides in the hippocampus. Moreover, SWCNT-PEG dispersions at all concentrations induced antioxidant defenses and reduced reactive oxygen species production in the hippocampus at 7 days post-injection. In this work, we found a time-dependent change in antioxidant defenses after the exposure to SWCNT-PEG. We hypothesized that the persistence of the nanomaterial in the tissue can induce an antioxidant response that might have provided resistance to an initial insult. Such antioxidant delayed response may constitute an adaptive response to the biopersistence of SWCNT-PEG in the hippocampus.


Assuntos
Antioxidantes/metabolismo , Hipocampo/metabolismo , Nanotubos de Carbono , Estresse Oxidativo , Animais , Comportamento Animal , Glutamato-Cisteína Ligase , Glutationa , Hipocampo/patologia , Peroxidação de Lipídeos , Masculino , Nanotubos de Carbono/química , Polietilenoglicóis/química , Ratos , Espécies Reativas de Oxigênio
15.
Biomed Res Int ; 2015: 104135, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25738149

RESUMO

Carbon nanotubes (CNT) are promising materials for biomedical applications, especially in the field of neuroscience; therefore, it is essential to evaluate the neurotoxicity of these nanomaterials. The present work assessed the effects of single-walled CNT functionalized with polyethylene glycol (SWCNT-PEG) on the consolidation and retrieval of contextual fear memory in rats and on oxidative stress parameters in the hippocampus. SWCNT-PEG were dispersed in water at concentrations of 0.5, 1.0, and 2.1 mg/mL and infused into the rat hippocampus. The infusion was completed immediately after training and 30 min before testing of a contextual fear conditioning task, resulting in exposure times of 24 h and 30 min, respectively. The results showed that a short exposure to SWCNT-PEG impaired fear memory retrieval and caused lipid peroxidation in the hippocampus. This response was transient and overcome by the mobilization of antioxidant defenses at 24 h. These effects occurred at low and intermediate but not high concentration of SWCNT-PEG, suggesting that the observed biological response may be related to the concentration-dependent increase in particle size in SWCNT-PEG dispersions.


Assuntos
Medo/efeitos dos fármacos , Hipocampo/metabolismo , Memória/efeitos dos fármacos , Nanotubos de Carbono , Estresse Oxidativo/efeitos dos fármacos , Polietilenoglicóis , Animais , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Ratos , Ratos Wistar
16.
Mar Environ Res ; 89: 53-62, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23743133

RESUMO

Fullerene (nC60) and nanosilver (nAg) are nanomaterials with bactericide properties. The increments in their use raise questions about their potential environmental impacts, including estuarine ones. The polychaete Laeonereis acuta (Nereididae) secretes mucus that is colonized by bacteria communities. We analyzed the antioxidant and oxidative damage responses of anterior, middle and posterior region of L. acuta and bacteria communities after nC60 or nAg exposure during 24 h. Molecular analysis showed a prevalence of Vibrio genera in the communities. Bacteria biomass was lowered in worms exposed to 1.0 mg/L of nAg. nC60 reduced total antioxidant capacity of bacteria from worms exposed to 0.1 mg/L. Worms anterior region presented lower antioxidant capacity after exposure to 1.0 mg nC60/L, and the same was observed in the posterior region of worms exposed to 1.0 mg nAg/L. Lipid peroxidation was reduced in the anterior region of worms exposed to nC60 and the opposite was observed in the posterior region.


Assuntos
Antibacterianos/toxicidade , Fulerenos/toxicidade , Nanopartículas Metálicas/toxicidade , Poliquetos/efeitos dos fármacos , Prata/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Antioxidantes/metabolismo , Biomassa , Peroxidação de Lipídeos , Estresse Oxidativo/efeitos dos fármacos , Poliquetos/microbiologia , Dinâmica Populacional , Prata/química , Prata/metabolismo
17.
Ecotoxicol Environ Saf ; 89: 182-8, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23273620

RESUMO

In situ translocation experiments are advantageous relative to traditional laboratory experiments, particularly for understanding the bioavailability of trace metals like mercury (Hg). Individuals of the polychaete Perinereis gualpensis were translocated from a reference site (Raqui estuary, Chile) to an estuarine site with significant sediment Hg concentrations (Lenga estuary: 1.78-9.89 mg/kg). Individuals were exposed in polluted and non-polluted sediments for 21 days and sampled every 7 days with cages deployed at three different depths. Tissue Hg concentrations were measured in conjunction with oxidative stress responses. Translocated polychaetes rapidly accumulated Hg. Glutathione S-transferase (GST) activities measured from posterior body regions were 2-fold higher than control activities after 21 days of exposure. Other antioxidant measures were idiosyncratic. Distinct burrowing behavior differences were observed; control polychaetes exhibited more homogenous vertical distributions, whereas in Lenga, worms tended to remain in upper layers. These studies demonstrate that under natural conditions, Hg is highly bioavailable to polychaetes affecting both biochemical and behavioral responses after relatively short-term exposure.


Assuntos
Comportamento Animal/efeitos dos fármacos , Poliquetos/efeitos dos fármacos , Poluentes do Solo/toxicidade , Animais , Disponibilidade Biológica , Chile , Exposição Ambiental , Monitoramento Ambiental , Ativação Enzimática/efeitos dos fármacos , Sedimentos Geológicos/química , Glutationa Transferase/metabolismo , Mercúrio/análise , Mercúrio/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Água do Mar/química , Poluentes do Solo/análise , Fatores de Tempo
18.
Environ Toxicol Chem ; 31(5): 961-7, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22410840

RESUMO

Studies concerning the impact of nanomaterials, especially fullerene (C(60) ), in fresh water environments and their effects on the physiology of aquatic organisms are still scarce and conflicting. We aimed to assess in vitro effects of fullerene in brain and gill homogenates of carp Cyprinus carpio, evaluating redox parameters. A fullerene suspension was prepared by continued stirring under fluorescent light during two months. The suspension concentration was measured by total carbon content and ultraviolet-visible spectroscopy nephelometry. Characterization of C(60) aggregates was performed with an enhanced dark-field microscopy system and transmission electronic microscopy. Organ homogenates were exposed during 1, 2, and 4 h under fluorescent light. Redox parameters evaluated were reduced glutathione and oxidized glutathione, cysteine and cystine, total antioxidant capacity; activity of the antioxidant enzymes glutathione S-transferase and glutathione reductase (GR), and lipid peroxidation (TBARS assay). Fullerene induced a significant increase (p < 0.05) in lipid peroxidation after 2 h in both organs and reduced GR activity after 1 h (gills) and 4 h (brain) and antioxidant capacity after 4 h (brain). Levels of oxidized glutathione increased in the brain at 1 h and decreased at 2 h as well. Given these results, it can be concluded that C(60) can induce redox disruption via thiol/disulfide pathway, leading to oxidative damage (higher TBARS values) and loss of antioxidant competence.


Assuntos
Encéfalo/efeitos dos fármacos , Carpas/metabolismo , Fulerenos/farmacologia , Brânquias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Encéfalo/enzimologia , Cisteína/metabolismo , Brânquias/enzimologia , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Glutationa Redutase/metabolismo , Glutationa Transferase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Substâncias Reativas com Ácido Tiobarbitúrico/análise , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/farmacologia
19.
Comp Biochem Physiol C Toxicol Pharmacol ; 155(2): 206-12, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21889614

RESUMO

Taking into account the concept of the "Trojan Horse", where contaminants may have its entry into specific organs potentiated by its association with nanomaterials, the aim of this study was to analyze the joint toxic effects induced by an organic nanomaterial, fullerene (C(60)) with the metalloid arsenic (As(III)). Hepatocytes of zebrafish Danio rerio were exposed to As(III) (2.5 or 100 µM), C(60) or As+C(60) for 4h, not altering cells viability. Intracellular reactive oxygen species concentration was reduced in cells exposed only to the C(60) (1mg/L) and in the treatment of 100 µM As(III)+C(60). Co-exposure with C(60) abolished the peak of the antioxidant glutathione (GSH) registered in cells exposed to the lowest As(III) concentration (2.5 µM). A similar result was observed in terms of lipid damage (TBARS). Total antioxidant capacity was significantly higher at both As(III) concentrations co-exposed to C(60) when compared with the control group. Activity of glutathione-S-transferase omega, a limiting enzyme in the methylation pathway of As(III), was reduced in the 100 µM As(III)+C(60) treatment. Cells co-exposed to C(60) had a significantly higher accumulation of As(III), showing a "Trojan Horse" effect which did not result in higher cell toxicity. Instead, co-exposure of As(III) with C(60) showed to reduce cellular injury.


Assuntos
Antioxidantes/metabolismo , Arsenicais/farmacologia , Fulerenos/farmacologia , Hepatócitos/efeitos dos fármacos , Animais , Arsenicais/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Interações Medicamentosas , Fulerenos/metabolismo , Glutationa/metabolismo , Glutationa Transferase/metabolismo , Hepatócitos/citologia , Hepatócitos/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Microscopia Eletrônica de Transmissão , Nanosferas/ultraestrutura , Carbonilação Proteica/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Fatores de Tempo , Peixe-Zebra
20.
Comp Biochem Physiol C Toxicol Pharmacol ; 154(3): 146-53, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21586338

RESUMO

This paper evaluated the chemoprotective effect of lipoic acid (LA) against microcystin (MC) toxicity in carp Cyprinus carpio. To determine the LA dose and the time necessary for the induction of three different classes (alpha, mu and pi) of glutathione S-transferase (GST) gene transcription, carp were i.p. injected with 40mg/kg lipoic acid solution. A group was killed 24h after the first i.p. injection (condition 1); another group received two i.p. injections with a 24h of interval between each one and was killed 48h after the first injection (condition 2) and a third group received one i.p. injection and was killed 48h latter (condition 3). Results showed that LA was effective in promoting an increase in GSTs gene transcription in liver only in the condition 2. A second experiment was done, where carp pre-treated with LA (condition 2) were gavaged twice with a 24h interval with 50µg MC/kg. Ninety-six hours after experiment beginning, carp were killed, and organs were dissected. Results of GST activity in liver and brain suggest that LA can be a useful chemoprotection agent against MC induced toxicity, stimulating detoxification through the increment of GST activity (brain) or through reversion of GST inhibition (liver).


Assuntos
Carpas , Microcistinas/toxicidade , Substâncias Protetoras/farmacologia , Ácido Tióctico/farmacologia , Animais , Antioxidantes/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Carpas/metabolismo , Glutamato-Cisteína Ligase/metabolismo , Glutationa/metabolismo , Glutationa Transferase/genética , Isoenzimas/genética , Fígado/efeitos dos fármacos , Fígado/enzimologia , Peróxidos/metabolismo , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA