RESUMO
Phosphate-solubilizing bacteria can release phosphorus (P) from insoluble minerals and benefit either soil fitness or plant growth. Bulk sized P compounds have been suggested but little is known about solubilization of nanosized materials such as hydroxyapatite nanoparticles (HANP). A screening of the initial 43 strains from vanilla rhizospheres for phosphate solubilization with bulk Ca3(PO4)2 was carried out. Subsequently, 6 strains were selected on bulk rock phosphate (RP) and HANP. Two kinetics experiments were run out regarding evaluation at 5, 10 and 20 days after inoculation (dai). Bacterial biomass production was similar in both experiments; the lowest biomass was found at 20 dai. In all cases, bacteria reduced the original culture medium pH; which was related with phosphate solubilization from the production of organic acids. Citric acid was produced by all strains. Enterobacter cloacae CP 31 was the most interesting bacterium: produced the lowest culture pH at 20 dai (4) with both Ca3(PO4)2 and RP, and 3.7 at 10 dai with HANP correlating with high soluble P concentration (536, 64 and 13 mg L-1 with these P sources, respectively). This bacterium should be tested as an inoculant in plants to reveal its potential as plant promoter growth and HANP to suggest its role in the potential use of nano-P fertilizers.