RESUMO
he resistance against antimalarial drugs represents a global challenge in the fight and control of malaria. The Brazilian biodiversity can be an important tool for research and development of new medicinal products. In this context, toxinology is a multidisciplinary approach on the development of new drugs, including the isolation, purification, and evaluation of the pharmacological activities of natural toxins. The present study aimed to evaluate the cytotoxicity, as well as the antimalarial activity in silico and in vitro of four compounds isolated from Rhinella marina venom as potential oral drug prototypes. Methods: Four compounds were challenged against 35 target proteins from P. falciparum and screened to evaluate their physicochemical properties using docking assay in Brazilian Malaria Molecular Targets (BraMMT) software and in silico assay in OCTOPUS® software. The in vitro antimalarial activity of the compounds against the 3D7 Plasmodium falciparum clones were assessed using the SYBR Green I based assay (IC50). For the cytotoxic tests, the LD50 was determined in human pulmonary fibroblast cell line using the [3(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT) assay. Results: All compounds presented a ligand-receptor interaction with ten Plasmodium falciparum-related protein targets, as well as antimalarial activity against chloroquine resistant strain (IC50 = 3.44 µM to 19.11 µM). Three of them (dehydrobufotenine, marinobufagin, and bufalin) showed adequate conditions for oral drug prototypes, with satisfactory prediction of absorption, permeability, and absence of toxicity. In the cell viability assay, only dehydrobufotenin was selective for the parasite. Conclusions: Dehydrobufotenin revealed to be a potential oral drug prototype presenting adequate antimalarial activity and absence of cytotoxicity, therefore should be subjected to further studies.(AU)
Assuntos
Bufanolídeos/administração & dosagem , Bufonidae , Biodiversidade , Malária/imunologia , Antimaláricos , Técnicas In Vitro , Simulação por ComputadorRESUMO
he resistance against antimalarial drugs represents a global challenge in the fight and control of malaria. The Brazilian biodiversity can be an important tool for research and development of new medicinal products. In this context, toxinology is a multidisciplinary approach on the development of new drugs, including the isolation, purification, and evaluation of the pharmacological activities of natural toxins. The present study aimed to evaluate the cytotoxicity, as well as the antimalarial activity in silico and in vitro of four compounds isolated from Rhinella marina venom as potential oral drug prototypes. Methods: Four compounds were challenged against 35 target proteins from P. falciparum and screened to evaluate their physicochemical properties using docking assay in Brazilian Malaria Molecular Targets (BraMMT) software and in silico assay in OCTOPUS® software. The in vitro antimalarial activity of the compounds against the 3D7 Plasmodium falciparum clones were assessed using the SYBR Green I based assay (IC50). For the cytotoxic tests, the LD50 was determined in human pulmonary fibroblast cell line using the [3(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT) assay. Results: All compounds presented a ligand-receptor interaction with ten Plasmodium falciparum-related protein targets, as well as antimalarial activity against chloroquine resistant strain (IC50 = 3.44 µM to 19.11 µM). Three of them (dehydrobufotenine, marinobufagin, and bufalin) showed adequate conditions for oral drug prototypes, with satisfactory prediction of absorption, permeability, and absence of toxicity. In the cell viability assay, only dehydrobufotenin was selective for the parasite. Conclusions: Dehydrobufotenin revealed to be a potential oral drug prototype presenting adequate antimalarial activity and absence of cytotoxicity, therefore should be subjected to further studies.(AU)
Assuntos
Bufanolídeos/administração & dosagem , Bufonidae , Biodiversidade , Malária/imunologia , Antimaláricos , Técnicas In Vitro , Simulação por ComputadorRESUMO
The skin secretion from toads of the Bufonidae family has great potential in the search for new active compounds to be used as drug candidates in treating some diseases, among them cancer. In this context, this study aimed to evaluate the cytotoxic and antimutagenic activity of the parotoid gland secretion extracts of Rhinella marina and Rhaebo guttatus, as well as biochemically analyze transaminases and serum creatinine for liver and renal damage, respectively. Cytotoxicity was performed by the colorimetric method based on MTT (3- [4, 5-dimethyl-2-thiazolyl]-2, 5-diphenyl-2H-tetrazolium bromide) with different concentrations of the extracts in Walker or splenic tumor cell cultures from rats and mice. The micronucleus test was performed with male Swiss mice treated orally with the extracts for 15 days, and then intraperitoneally with N-ethyl-N-nitrosurea (50 mg kg-1). Micronucleated polychromatic erythrocytes (MNPCE) were evaluated in bone marrow. The extracts showed cytotoxic activity in the evaluated cells. There was a significant reduction in the frequency of MNPCE (R. marina = 56% and R. guttatus = 75%, p < 0.001), indicating antimutagenic potential of the extracts. The groups treated only with extract showed an increase in MNPCE frequency, evidencing mutagenic potential. Biochemical analyzes showed no significant difference between treatments. Thus, under our experimental conditions, the extracts of R. marina and R. guttatus skin secretions presented chemopreventive potential for cancer.(AU)
A secreção cutânea de anuros da família Bufonidae tem grande potencial na busca de novos compostos ativos para utilização como fármacos candidatos no tratamento de algumas doenças, entre elas o câncer. Neste contexto, este estudo teve como objetivo avaliar a atividade citotóxica e antimutagênica dos extratos da secreção da glândula parótida de Rhinella marina e Rhaebo guttatus, bem como a análise bioquímica de transaminases e creatinina séricas, para avaliar dano hepático e renal, respectivamente. A avaliação de citotoxicidade foi realizada pelo método colorimétrico baseado no MTT (3-[4, 5-dimethyl-2-thiazolyl]-2, 5-diphenyl-2H-tetrazolium bromide), com diferentes concentrações dos extratos em culturas de células do Tumor de Walker ou células esplênicas de rato e camundongo. O teste do micronúcleo foi realizado com camundongos Swiss machos que receberam tratamento oral com os extratos durante 15 dias, seguido de tratamento intraperitoneal com N-etil-N-nitrosuréia (50 mg kg-1). A frequência de eritrócitos policromáticos micronucleados (PCEMN) foi determinada em medula óssea. Os extratos apresentaram ação citotóxica nas células avaliadas. Houve uma redução significativa na frequência de PCEMN (R. marina = 56% e R. guttatus = 75%, p < 0,001), observando-se um potencial antimutagênico dos extratos. Os grupos tratados somente com os extratos apresentaram um aumento na frequência de PCEMNs, evidenciando um potencial mutagênico. As análises bioquímicas não apresentaram diferença significativa entre os tratamentos. Assim, nas condições experimentais testadas, as secreções cutâneas de R. marina e R. guttatus apresentaram potencial quimiopreventivo para câncer.(AU)
RESUMO
Amphibians present pharmacologically active aliphatic, aromatic and heterocyclic molecules in their skin as defense against microorganisms, predators and infections, such as steroids, alkaloids, biogenic amines, guanidine derivatives, proteins and peptides. Based on the discovered bioactive potential of bufadienolides, this work reviewed the contribution of amphibians, especially from members of Bufonidae family, as source of new cytotoxic and antitumor molecules, highlighting the mechanisms responsible for such amazing biological potentialities. Bufonidae species produce bufadienolides related to cholesterol through the mevalonate-independent and acidic bile acid pathways as polyhydroxy steroids with 24 carbons. In vitro antitumor studies performed with skin secretions and its isolated components (specially marinobufagin, telocinobufagin, bufalin and cinobufagin) from Rhinella, Bufo and Rhaebo species have shown remarkable biological action on hematological, solid, sensitive and/or resistant human tumor cell lines. Some compounds revealed higher selectivity against neoplastic lines when compared to dividing normal cells and some molecules may biochemically associate with Na+/K+-ATPase and there is structural similarity to the digoxin- and ouabain-Na+/K+-ATPase complexs, implying a similar mechanism of the Na+/K+-ATPase inhibition by cardenolides and bufadienolides. Some bufadienolides also reduce levels of antiapoptotic proteins and DNA synthesis, cause morphological changes (chromatin condensation, nuclear fragmentation, cytoplasm shrinkage, cytoplasmic vacuoles, stickiness reduction and apoptotic bodies), cell cycle arrest in G2/M or S phases, mitochondrial depolarization, PARP [poly (ADPribose) polymerase] and Bid cleavages, cytochrome c release, activation of Bax and caspases (-3, -9, -8 and -10), increased expression of the Fas-Associated protein with Death Domain (FADD), induce topoisomerase II inhibition, DNA fragmentation, cell differentiation, angiogenesis inhibition, multidrug resistance reversion, and also regulate immune responses. Then, bufadienolides isolated from amphibians, some of them at risk of extinction, emerge as a natural class of incredible chemical biodiversity, has moderate selectivity against human tumor cells and weak activity on murine cells, probably due to structural differences between subunits of human and mice Na+/K+-ATPases.