Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 13(13)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202687

RESUMO

Scales of Prochilodus magdalenae, a Colombian endemic fish species, were used to obtain chitosan for application as an antibacterial agent integrated into starch-based films. Analysis of its composition during the demineralization and deproteinization process indicated that minerals and protein were both removed successfully. At this point, mild conditions for the deacetylation process were employed, namely, 2, 4, and 6 wt.% NaOH at room temperature for 16 h. Chitosan processed under 2 wt.% NaOH had low molecular weight, with the lowest value of 107.18 ± 24.99 kDa, which was closely related to its antibacterial activity. Finally, this chitosan was integrated into a banana starch-based film, and its antibacterial activity was assayed in Escherichia coli and Staphylococcus aureus cultures, with positive results in the former culture, especially due to the low-molecular-weight characteristic of chitosan.

2.
Carbohydr Polym ; 240: 116341, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32475595

RESUMO

In this study, the effect of bioreactor size was evaluated with respect to the production and characteristics of the nanocellulose membranes produced by two different bioreactors: one with an 1800 cm2 cross-sectional area (BC-B44) and a lab-scale bioreactor with a 41 cm2 cross-sectional area (BC-B1). The culture conditions were kept the same, and the substrate consisted of overripe bananas, which are inexpensive because they are unsuitable for human consumption. The X-ray diffraction pattern showed that the two samples had similar crystalline structures, but changes were observed at the morphological level in the nanofibers that make up the BNC membranes. These changes generated, in turn, variations in the mechanical and thermal properties of the samples. This result represents a novel scale-up effect related to the static mode fermentation of BNC.


Assuntos
Acetobacteraceae/química , Celulose/biossíntese , Meios de Cultura/metabolismo , Fermentação , Musa/química , Nanoestruturas/química , Acetobacteraceae/metabolismo , Reatores Biológicos , Celulose/química , Meios de Cultura/química
3.
Materials (Basel) ; 10(6)2017 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-28773001

RESUMO

Bacterial cellulose (BC) is a polymer obtained by fermentation with microorganism of different genera. Recently, new producer species have been discovered, which require identification of the most important variables affecting cellulose production. In this work, the influence of different carbon sources in BC production by a novel low pH-resistant strain Komagataeibacter medellinensis was established. The Hestrin-Schramm culture medium was used as a reference and was compared to other media comprising glucose, fructose, and sucrose, used as carbon sources at three concentrations (1, 2, and 3% w/v). The BC yield and dynamics of carbon consumption were determined at given fermentation times during cellulose production. While the carbon source did not influence the BC structural characteristics, different production levels were determined: glucose > sucrose > fructose. These results highlight considerations to improve BC industrial production and to establish the BC property space for applications in different fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA