Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chempluschem ; 86(7): 1006-1013, 2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34260160

RESUMO

Two novel and simple donor-π-bridge-donor (D-π-D) hole-transporting materials (HTMs) containing two units of the p-methoxytriphenylamine (TPA) electron donor group covalently bridged by means of the 3,4-dimethoxyselenophene spacer through single and triple bonds are reported. The optoelectronic and thermal properties of the new selenium-containing HTMs have been determined using standard experimental techniques and theoretical density functional theory (DFT) calculations. The selenium-based HTMs have been incorporated in mesoporous perovskite solar cells (PSCs) in combination with the triple-cation perovskite [(FAPbI3 )0.87 (MAPbBr3 )0.13 ]0.92 [CsPbI3 ]0.08 . Limited values of power conversion efficiencies, up to 13.4 %, in comparison with the archetype spiro-OMeTAD (17.8 %), were obtained. The reduced efficiencies showed by the new HTMs are attributed to their poor film-forming ability, which constrains their photovoltaic performance due to the appearance of structural defects (pinholes).

2.
Chemistry ; 26(48): 11039-11047, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32608525

RESUMO

Three novel donor-π-bridge-donor (D-π-D) hole-transporting materials (HTMs) featuring triazatruxene electron-donating units bridged by different 3,4-ethylenedioxythiophene (EDOT) π-conjugated linkers have been synthesized, characterized, and implemented in mesoporous perovskite solar cells (PSCs). The optoelectronic properties of the new dumbbell-shaped derivatives (DTTXs) are highly influenced by the chemical structure of the EDOT-based linker. Red-shifted absorption and emission and a stronger donor ability were observed in passing from DTTX-1 to DTTX-2 due to the extended π-conjugation. DTTX-3 featured an intramolecular charge transfer between the external triazatruxene units and the azomethine-EDOT central scaffold, resulting in a more pronounced redshift. The three new derivatives have been tested in combination with the state-of-the-art triple-cation perovskite [(FAPbI3 )0.87 (MAPbBr3 )0.13 ]0.92 [CsPbI3 ]0.08 in standard mesoporous PSCs. Remarkable power conversion efficiencies of 17.48 % and 18.30 % were measured for DTTX-1 and DTTX-2, respectively, close to that measured for the benchmarking HTM spiro-OMeTAD (18.92 %), under 100 mA cm-2 AM 1.5G solar illumination. PSCs with DTTX-3 reached a PCE value of 12.68 %, which is attributed to the poorer film formation in comparison to DTTX-1 and DTTX-2. These PCE values are in perfect agreement with the conductivity and hole mobility values determined for the new compounds and spiro-OMeTAD. Steady-state photoluminescence further confirmed the potential of DTTX-1 and DTTX-2 for hole-transport applications as an alternative to spiro-OMeTAD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA