Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 290(2011): 20232223, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37964521

RESUMO

The gut microbiome composition of terrestrial vertebrates is known to converge in response to common specialized dietary strategies, like leaf-eating (folivory) or ant- and termite-eating (myrmecophagy). To date, such convergence has been studied in mammals and birds, but has been neglected in amphibians. Here, we analysed 15 anuran species (frogs and toads) representing five Neotropical families and demonstrated the compositional convergence of the gut microbiomes of distantly related myrmecophagous species. Specifically, we found that the gut microbial communities of bufonids and microhylids, which have independently evolved myrmecophagy, were significantly more similar than expected based on their hosts' evolutionary divergence. Conversely, we found that gut microbiome composition was significantly associated with host evolutionary history in some cases. For instance, the microbiome composition of Xenohyla truncata, one of the few known amphibians that eat fruits, was not different from those of closely related tree frogs with an arthropod generalist diet. Bacterial taxa overrepresented in myrmecophagous species relative to other host families include Paludibacter, Treponema, and Rikenellaceae, suggesting diet-mediated selection and prey-to-predator transmission likely driving the observed compositional convergence. This study provides a basis for examining the roles of the gut microbiome in host tolerance and sequestration of toxic alkaloids from ants and termites.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Animais , Evolução Biológica , Mamíferos/microbiologia , Anuros , RNA Ribossômico 16S
2.
Proc Natl Acad Sci U S A ; 111(46): 16431-5, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25368157

RESUMO

Humans are ecosystems containing trillions of microorganisms, but the evolutionary history of this microbiome is obscured by a lack of knowledge about microbiomes of African apes. We sequenced the gut communities of hundreds of chimpanzees, bonobos, and gorillas and developed a phylogenetic approach to reconstruct how present-day human microbiomes have diverged from those of ancestral populations. Compositional change in the microbiome was slow and clock-like during African ape diversification, but human microbiomes have deviated from the ancestral state at an accelerated rate. Relative to the microbiomes of wild apes, human microbiomes have lost ancestral microbial diversity while becoming specialized for animal-based diets. Individual wild apes cultivate more phyla, classes, orders, families, genera, and species of bacteria than do individual humans across a range of societies. These results indicate that humanity has experienced a depletion of the gut flora since diverging from Pan.


Assuntos
Especiação Genética , Variação Genética , Hominidae/microbiologia , Intestinos/microbiologia , Microbiota , Primatas/microbiologia , África , América , Animais , Bactérias/classificação , Bactérias/isolamento & purificação , Dieta , Fezes/microbiologia , Hominidae/classificação , Humanos , Estilo de Vida , Filogenia , Grupos Populacionais , Primatas/classificação , Especificidade da Espécie , População Urbana , Venezuela
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA