Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(3): e0300006, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38498472

RESUMO

PURPOSE: Considering the difficulties and challenges in Duchenne muscular dystrophy (DMD) treatment, such as the adverse effects of glucocorticoids, which are the main medical prescription used by dystrophic patients, new treatment concepts for dystrophic therapy are very necessary. Thus, in this study, we explore the effects of photobiomodulation (PBM; a non-invasive therapy) and Idebenone (IDE) treatment (a potent antioxidant), applied alone or in association, in dystrophic muscle cells and the quadriceps muscle, with special focus on autophagy and regenerative pathways. METHODS: For the in vitro studies, the dystrophic primary muscle cells received 0.5J LEDT and 0.06µM IDE; and for the in vivo studies, the dystrophic quadriceps muscle received 3J LEDT and the mdx mice were treated with 200mg/kg IDE. RESULTS: LEDT and IDE treatment modulate autophagy by increasing autophagy markers (SQSTM1/p62, Beclin and Parkin) and signaling pathways (AMPK and TGF-ß). Concomitantly, the treatments prevented muscle degeneration by reducing the number of IgG-positive fibers and the fibers with a central nucleus; decreasing the fibrotic area; up-regulating the myogenin and MCH-slow levels; and down-regulating the MyoD and MHC-fast levels. CONCLUSION: These results suggest that LEDT and IDE treatments enhance autophagy and prevented muscle degeneration in the dystrophic muscle of the experimental model. These findings illustrate the potential efficacy of LEDT and IDE treatment as an alternative therapy focused on muscle recovery in the dystrophic patient.


Assuntos
Músculo Esquelético , Distrofia Muscular de Duchenne , Ubiquinona/análogos & derivados , Animais , Camundongos , Humanos , Músculo Esquelético/metabolismo , Camundongos Endogâmicos mdx , Proteínas Quinases Ativadas por AMP/metabolismo , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/metabolismo , Autofagia , Modelos Animais de Doenças
2.
Photochem Photobiol Sci ; 23(1): 107-118, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38057632

RESUMO

PURPOSE: Reactive oxygen species and mitochondrial dysfunction play a crucial role in the pathophysiology of Duchenne muscular dystrophy (DMD). The light-emitting diode therapy (LEDT) showed beneficial effects on the dystrophic muscles. However, the mechanisms of this therapy influence the molecular pathways in the dystrophic muscles, particularly related to antioxidant effects, which still needs to be elucidated. The current study provides muscle cell-specific insights into the effect of LEDT, 48 h post-irradiation, on oxidative stress and mitochondrial parameters in the dystrophic primary muscle cells in culture. METHODS: Dystrophic primary muscle cells were submitted to LEDT, at multiple wavelengths (420 nm, 470 nm, 660 nm and 850 nm), 0.5 J dose, and evaluated after 48 h based on oxidative stress markers, antioxidant enzymatic system and biogenesis, and functional mitochondrial parameters. RESULTS: The mdx muscle cells treated with LEDT showed a significant reduction of H2O2 production and 4-HNE, catalase, SOD-2, and GR levels. Upregulation of UCP3 was observed with all wavelengths while upregulation of PGC-1α and a slight upregulation of electron transport chain complexes III and V was only observed following 850 nm LEDT. In addition, the mitochondrial membrane potential and mitochondrial mass mostly tended to be increased following LEDT, while parameters like O2·- production tended to be decreased. CONCLUSION: The data shown here highlight the potential of LEDT as a therapeutic agent for DMD through its antioxidant action by modulating PGC-1α and UCP3 levels.


Assuntos
Antioxidantes , Músculo Esquelético , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Músculo Esquelético/efeitos da radiação , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , Células Musculares/metabolismo
3.
Cell Stress Chaperones ; 28(6): 773-785, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37578579

RESUMO

Intracellular calcium dysregulation, oxidative stress, and mitochondrial dysfunction are some of the main pathway contributors towards disease progression in Duchenne muscular dystrophy (DMD). This study is aimed at investigating the effects of light emitting diode therapy (LEDT) and idebenone antioxidant treatment, applied alone or together in dystrophic primary muscle cells from mdx mice, the experimental model of DMD. Mdx primary muscle cells were submitted to LEDT and idebenone treatment and evaluated for cytotoxic effects and calcium and mitochondrial signaling pathways. LEDT and idebenone treatment showed no cytotoxic effects on the dystrophic muscle cells. Regarding the calcium pathways, after LEDT and idebenone treatment, a significant reduction in intracellular calcium content, calpain-1, calsequestrin, and sarcolipin levels, was observed. In addition, a significant reduction in oxidative stress level markers, such as H2O2, and 4-HNE levels, was observed. Regarding mitochondrial signaling pathways, a significant increase in oxidative capacity (by OCR and OXPHOS levels) was observed. In addition, the PGC-1α, SIRT-1, and PPARδ levels were significantly higher in the LEDT plus idebenone treated-dystrophic muscle cells. Together, the findings suggest that LEDT and idebenone treatment, alone or in conjunction, can modulate the calcium and mitochondrial signaling pathways, such as SLN, SERCA 1, and PGC-1α, contributing towards the improvement of the dystrophic phenotype in mdx muscle cells. In addition, data from the LEDT plus idebenone treatment showed slightly better results than those of each separate treatment in terms of SLN, OXPHOS, and SIRT-1.


Assuntos
Cálcio , Músculo Esquelético , Camundongos , Animais , Camundongos Endogâmicos mdx , Músculo Esquelético/metabolismo , Cálcio/metabolismo , Camundongos Endogâmicos C57BL , Peróxido de Hidrogênio/metabolismo , Transdução de Sinais , Células Musculares/metabolismo , Modelos Animais de Doenças
4.
Photobiomodul Photomed Laser Surg ; 41(8): 389-401, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37527194

RESUMO

Objective: This study evaluated photobiomodulation therapy (PBMT) effects on the factors involved in mitochondrial biogenesis, on the mitochondrial respiratory complexes, and on the transient receptor potential canonical channels (such as TRPC-1 and TRPC-6) in in vitro (mdx muscle cells) and in vivo studies (gastrocnemius muscle) from mdx mice, the dystrophin-deficient model of Duchenne muscular dystrophy (DMD). Background: There is no successful treatment for DMD, therefore demanding search for new therapies that can improve the muscle role, the quality of life, and the survival of dystrophic patients. Methods: The dystrophic primary muscle cells received PBMT at 0.6 J and 5 J, and the dystrophic gastrocnemius muscle received PBMT at 0.6 J. Results: The dystrophic muscle cells treated with PBMT (0.6 J and 5 J) showed no cytotoxicity and significantly lower levels in hydrogen peroxide (H2O2) production. We also demonstrated, for the first time, the capacity of PBMT, at a low dose (0.6 J), in reducing the TRPC-6 content and in raising the peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) content in the dystrophic gastrocnemius muscle. Conclusions: PBMT modulates H2O2 production, TRPC-6, and PGC-1α content in the dystrophic muscle. These results suggest that laser therapy could act as an auxiliary therapy in the treatment of dystrophic patients.


Assuntos
Peróxido de Hidrogênio , Terapia com Luz de Baixa Intensidade , Animais , Camundongos , Peróxido de Hidrogênio/farmacologia , Camundongos Endogâmicos mdx , Músculo Esquelético , Qualidade de Vida
5.
Int J Exp Pathol ; 104(1): 4-12, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36565155

RESUMO

There is strong cross-talk between abnormal intracellular calcium concentration, high levels of reactive oxygen species (ROS) and an exacerbated inflammatory process in the dystrophic muscles of mdx mice, the experimental model of Duchenne muscular dystrophy (DMD). In this study, we investigated effects of Idebenone, a potent anti-oxidant, on oxidative stress markers, the anti-oxidant defence system, intracellular calcium concentrations and the inflammatory process in primary dystrophic muscle cells from mdx mice. Dystrophic muscle cells were treated with Idebenone (0.05 µM) for 24 h. The untreated mdx muscle cells were used as controls. The MTT assay showed that Idebenone did not have a cytotoxic effect on the dystrophic muscle cells. The Idebenone treatment was able to reduce the levels of oxidative stress markers, such as H2 O2 and 4-HNE, as well as decreasing intracellular calcium influx in the dystrophic muscle cells. Regarding Idebenone effects on the anti-oxidant defence system, an up-regulation of catalase levels, glutathione reductase (GR), glutathione peroxidase (GPx) and superoxide dismutase (SOD) activity was observed in the dystrophic muscle cells. In addition, the Idebenone treatment was also associated with reduction in inflammatory molecules, such as nuclear factor kappa-B (NF-κB) and tumour necrosis factor (TNF) in mdx muscle cells. These outcomes supported the use of Idebenone as a protective agent against oxidative stress and related signalling mechanisms involved in dystrophinopathies, such as DMD.


Assuntos
Músculo Esquelético , Distrofia Muscular de Duchenne , Animais , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/metabolismo , Cálcio/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Distrofia Muscular de Duchenne/tratamento farmacológico , Estresse Oxidativo , Inflamação/metabolismo , Células Musculares/metabolismo , Células Musculares/patologia
6.
Cell Stress Chaperones ; 27(4): 417-429, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35687225

RESUMO

Indigo is a bis-indolic alkaloid that has antioxidant and anti-inflammatory effects reported in literature and is a promissory compound for treating chronic inflammatory diseases. This fact prompted to investigate the effects of this alkaloid in the experimental model of Duchenne muscular dystrophy. The main aim of this study was to evaluate the potential role of the indigo on oxidative stress and related signaling pathways in primary skeletal muscle cell cultures and in the diaphragm muscle from mdx mice. The MTT and Neutral Red assays showed no indigo dose-dependent toxicities in mdx muscle cells at concentrations analyzed (3.12, 6.25, 12.50, and 25.00 µg/mL). Antioxidant effect of indigo, in mdx muscle cells and diaphragm muscle, was demonstrated by reduction in 4-HNE content, H2O2 levels, DHE reaction, and lipofuscin granules. A significant decrease in the inflammatory process was identified by a reduction on TNF and NF-κB levels, on inflammatory area, and on macrophage infiltration in the dystrophic sample, after indigo treatment. Upregulation of PGC-1α and SIRT1 in dystrophic muscle cells treated with indigo was also observed. These results suggest the potential of indigo as a therapeutic agent for muscular dystrophy, through their action anti-inflammatory, antioxidant, and modulator of SIRT1/PGC-1α pathway.


Assuntos
Distrofia Muscular de Duchenne , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antioxidantes/metabolismo , Modelos Animais de Doenças , Peróxido de Hidrogênio/metabolismo , Índigo Carmim/metabolismo , Índigo Carmim/farmacologia , Índigo Carmim/uso terapêutico , Alcaloides Indólicos/metabolismo , Alcaloides Indólicos/farmacologia , Alcaloides Indólicos/uso terapêutico , Camundongos , Camundongos Endogâmicos mdx , Modelos Teóricos , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/tratamento farmacológico , Transdução de Sinais , Sirtuína 1/metabolismo
7.
Free Radic Res ; 56(3-4): 245-257, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35549793

RESUMO

Background Ca2+ dysregulation and oxidative damage appear to have a central role in Duchenne muscular dystrophy (DMD) progression. The current study provides muscle cell-specific insights into the effect of Tempol on the TRPC 1 channel; on the positive and negative regulators of muscle cell differentiation; on the antioxidant enzymatic system; on the activators of mitochondrial biogenesis; and on the inflammatory process in the dystrophic primary muscle cells in culture. METHODS: Mdx myotubes were treated with Tempol (5 mM) for 24 h. Untreated mdx myotubes and C57BL/10 myotubes were used as controls. RESULTS: The Trypan Blue, MTT and Live/Dead Cell assays showed that Tempol (5 mM) presented no cytotoxic effect on the dystrophic muscle cells. The Tempol treated-mdx muscle cells showed significantly lower levels in the fluorescence intensity of intracellular calcium; TRPC-1 channel; MyoD; H2O2 and O2•- production; 4-HNE levels; SOD2, CAT and GPx levels; and TNF levels. On the other hand, SOD, CAT and GR mRNA relative expression were significantly higher in Tempol treated-mdx muscle cells. In addition, higher levels of Myogenin, MHC-Slow, mTOR, PGC-1α and PPARδ were also observed in Tempol treated-mdx muscle cells. CONCLUSION: Our findings demonstrated that Tempol decreased intracellular calcium and oxidative stress in primary dystrophic muscle cells, promoting a cross-talk between TRPC-1, mTOR, PGC-1α and PPARδ.


Assuntos
PPAR delta , Animais , Cálcio/metabolismo , Óxidos N-Cíclicos , Peróxido de Hidrogênio/metabolismo , Camundongos , Camundongos Endogâmicos mdx , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , PPAR delta/metabolismo , PPAR delta/farmacologia , Marcadores de Spin , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/farmacologia
8.
Photochem Photobiol Sci ; 21(7): 1257-1272, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35380391

RESUMO

This study is aimed at investigating the effects of LEDT, at multiple wavelengths, on intracellular calcium concentration; on transient receptor potential canonical channels; on calcium-binding protein; on myogenic factors; on myosin heavy chains; on Akt signaling pathway; on inflammatory markers; and on the angiogenic-inducing factor in dystrophic muscle cell culture experimental model. Dystrophic primary muscle cells were submitted to LEDT, at multiple wavelengths (420 nm, 470 nm, 660 nm, and 850 nm), and evaluated after 48 h for cytotoxic effects and intracellular calcium content. TRPC-1, TRPC-6, Calsequestrin, MyoD, Myogenin, MHC-slow, MHC-fast, p-AKT, p-mTOR, p-FoxO1, Myostatin, NF-κB, TNF-α, and VEGF levels were evaluated in dystrophic primary muscle cells by western blotting. The LEDT, at multiple wavelengths, treated-mdx muscle cells showed no cytotoxic effect and significant lower levels in [Ca2 +]i. The mdx muscle cells treated with LEDT showed a significant reduction of TRPC-1, NF-κB, TNF-α and MyoD levels and a significant increase of Myogenin, MHC-slow, p-AKT, p-mTOR, p-FoxO1 levels, and VEGF levels. Our findings suggest that different LEDT wavelengths modulate the Akt-signaling pathways and attenuate pathological events in dystrophic muscle cells, and a combined multiwavelength irradiation protocol may even provide a potentially therapeutic strategy for muscular dystrophies.


Assuntos
NF-kappa B , Proteínas Proto-Oncogênicas c-akt , Animais , Cálcio/metabolismo , Camundongos , Camundongos Endogâmicos mdx , Células Musculares/metabolismo , Músculo Esquelético , Miogenina/metabolismo , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
Front Physiol ; 12: 649793, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33981250

RESUMO

The mdx mouse phenotype aggravated by chronic exercise on a treadmill makes this murine model more reliable for the study of muscular dystrophy. Thus, to better assess the Tempol effect on dystrophic pathways, the analyses in this study were performed in the blood samples and diaphragm muscle from treadmill trained adult (7-11-weeks old) mdx animals. The mdx mice were divided into three groups: mdxSed, sedentary controls (n = 28); mdxEx, exercise-trained animals (n = 28); and mdxEx+T, exercise-trained animals with the Tempol treatment (n = 28). The results demonstrated that the Tempol treatment promoted muscle strength gain, prevented muscle damage, reduced the inflammatory process, oxidative stress, and angiogenesis regulator, and up regulated the activators of mitochondrial biogenesis. The main new findings of this study are that Tempol reduced the NF-κB and increased the PGC1-α and PPARδ levels in the exercise-trained-mdx mice, which are probably related to the ability of this antioxidant to scavenge excessive ROS. These results reinforce the use of Tempol as a potential therapeutic strategy in DMD.

10.
Int J Exp Pathol ; 101(6): 289-297, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33098599

RESUMO

Oxidative stress is a critical element in relationship to the pathophysiology of Duchenne muscular dystrophy (DMD). In the mice the diaphragm (DIA) is most resembles the dystrophic human pathology. In this study we have evaluated the consequences of a synthetic antioxidant (tempol) on oxidative stress parameters in the DIA muscle of mdx mice. The mdx mice were separated into two groups: mdx, the control group receiving intraperitoneal (i.p.) injections of saline solution (100 µL), and mdxT, the treated group receiving i.p. injections of tempol (100 mg/kg). The tempol-treated group showed reduced oxidative stress markers, decreasing the dihydroethidium reaction (DHE) area; autofluorescent lipofuscin granules; and 4-hydroxynonenal (4-HNE)-protein adduct levels. DIA muscle of mdx mice. At the same time, the manganese-superoxide dismutase 2 (SOD2) levels were increased in the tempol-treated group. In addition, the tempol-treated group showed reduced levels of glutathione-disulphide reductase (GSR), glutathione peroxidase 1 (GPx1) and catalase (CAT) in immunoblots. The tempol-treated group has also shown lower relative gene expression of SOD1, CAT and GPx than the non-treated group. Our data demonstrated that tempol treatment reduced oxidant parameters and increased anti-oxidant SOD2 levels in the DIA muscle of mdx mice, which may contribute to the normalization of the redox homeostasis of dystrophic muscles.


Assuntos
Antioxidantes/farmacologia , Óxidos N-Cíclicos/farmacologia , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/fisiopatologia , Animais , Diafragma/efeitos dos fármacos , Diafragma/fisiopatologia , Modelos Animais de Doenças , Feminino , Homeostase/efeitos dos fármacos , Humanos , Injeções Intraperitoneais , Masculino , Camundongos , Camundongos Endogâmicos mdx , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Marcadores de Spin , Superóxido Dismutase/metabolismo
11.
Photochem Photobiol ; 96(1): 200-207, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31733143

RESUMO

This study analyzed photobiomodulation therapy (PBMT) effects on regenerative, antioxidative, anti-inflammatory and angiogenic markers in the dystrophic skeletal muscle of mdx mice, the experimental model of Duchenne muscular dystrophy (DMD), during the acute phase of dystrophy disease. The following groups were set up: Ctrl (control group of normal wild-type mice; C57BL/10); mdx (untreated mdx mice); mdxPred (mdx mice treated with prednisolone) and mdxLA (mdx mice treated with PBMT). The PBMT was carried out using an Aluminum Gallium Arsenide (AIGaAs; IBRAMED® laserpulse) diode, 830 nm wavelength, applied on the dystrophic quadriceps muscle. The mdxLA group showed a degenerative and regenerative area reduction simultaneously with a MyoD level increase, ROS production and inflammatory marker reduction and up-regulation in the VEGF factor. In addition, PBMT presented similar effects to prednisolone treatment in most of the parameters analyzed. In conclusion, our results indicate that PBMT in the parameters selected attenuated the dystrophic phenotype of mdx mice, improving skeletal muscle regeneration; reducing the oxidative stress and inflammatory process; and up-regulating the angiogenic marker.


Assuntos
Terapia com Luz de Baixa Intensidade , Distrofia Muscular Animal/terapia , Distrofia Muscular de Duchenne/terapia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/patologia , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Fenótipo , Fator de Crescimento Transformador beta/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
12.
Cell Stress Chaperones ; 24(6): 1175-1185, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31620981

RESUMO

Increased oxidative stress is a frequent feature in Duchenne muscular dystrophy (DMD). High reactive oxygen species (ROS) levels, associated with altered enzyme antioxidant activity, have been reported in dystrophic patients and mdx mice, an experimental model of DMD. In this study, we investigated the effects of coenzyme Q10 (CoQ10) on oxidative stress marker levels and calcium concentration in primary cultures of dystrophic muscle cells from mdx mice. Primary cultures of skeletal muscle cells from C57BL/10 and mdx mice were treated with coenzyme Q10 (5 µM) for 24 h. The untreated mdx and C57BL/10 muscle cells were used as controls. The MTT and live/dead cell assays showed that CoQ10 presented no cytotoxic effect on normal and dystrophic muscle cells. Intracellular calcium concentration, H2O2 production, 4-HNE, and SOD-2 levels were higher in mdx muscle cells. No significant difference in the catalase, GPx, and Gr levels was found between experimental groups. This study demonstrated that CoQ10 treatment was able to reduce levels of oxidative stress markers, such as H2O2, acting as an antioxidant, as well as decreasing abnormal intracellular calcium influx in dystrophic muscles cells. This study demonstrated that CoQ10 treatment was able to reduce levels of oxidative stress markers, such as H2O2, acting as an antioxidant, as well as decreasing abnormal intracellular calcium influx in dystrophic muscles cells. Our findings also suggest that the decrease of oxidative stress reduces the need for upregulation of antioxidant pathways, such as SOD and GSH.


Assuntos
Antioxidantes/farmacologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Distrofia Muscular de Duchenne/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Ubiquinona/análogos & derivados , Animais , Cálcio/metabolismo , Células Cultivadas , Suplementos Nutricionais , Feminino , Peróxido de Hidrogênio/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/patologia , Espécies Reativas de Oxigênio/metabolismo , Ubiquinona/farmacologia , Vitaminas/farmacologia
13.
PLoS One ; 14(4): e0215590, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31009514

RESUMO

Considering potential Tempol effects on mdx muscle fibers, in this study we evaluated its effects on relevant dystrophic phenotypic characteristics, such as muscle degeneration, inflammatory process and angiogenesis, which as yet have not been investigated. Mdx mice were randomly assigned into three groups: mdxS, the control group receiving intraperitoneal (i.p.) injections of saline solution (100µL); mdxP, positive control group receiving prednisolone (1mg/kg) by oral gavage; and mdxT, treated group receiving i.p. injections of tempol (100 mg/kg). C57BL/10 mice were also used as controls. Tempol treatment promoted gain in muscle strength and reduced myonecrosis and inflammatory response in the dystrophic diaphragm (DIA) and biceps brachii (BB) muscles. No evidence of Tempol's beneficial performance on angiogenesis in DIA and BB mdx muscles was found. The findings presented here show that Tempol treatment improves dystrophic phenotype, supporting its use as a potential therapeutic strategy in DMD.


Assuntos
Óxidos N-Cíclicos/farmacologia , Força Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Distrofias Musculares/fisiopatologia , Distrofia Muscular Animal/fisiopatologia , Distrofia Muscular de Duchenne/fisiopatologia , Animais , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Óxidos N-Cíclicos/administração & dosagem , Diafragma/metabolismo , Diafragma/fisiopatologia , Modelos Animais de Doenças , Humanos , Injeções Intraperitoneais , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Distrofias Musculares/genética , Distrofias Musculares/patologia , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Fenótipo , Marcadores de Spin
14.
Cell Biol Int ; 42(12): 1611-1621, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30238549

RESUMO

Physical exercise promotes increased muscle damage in the mdx mice, the experimental model of Duchenne muscular dystrophy. Studies suggest that the estrogen level in females makes them less susceptible to muscle injuries. The aim of this study was to characterize the diaphragm (DIA) muscle response to physical exercise in male and female mdx mice. The animals were divided into four groups: female sedentary mdx; male sedentary mdx; female mdx submitted to exercise; and male mdx mice submitted to exercise. Blood samples were used to determine creatine kinase (CK). Regenerated muscle fibers were indicated by the presence of central nucleus and also inflammation areas were determined in DIA muscle sections. The alpha and beta estrogen receptors (ER) were determined by means of immunohistochemistry evaluation in the dystrophic DIA muscle. Male mdx animals submitted to exercise showed increased CK levels and inflammatory area. The quantification of regenerated fibers was higher in male animals, submitted or not to physical exercise. Greater alpha and beta ER expression was verified in the females submitted to exercise in the DIA muscle than in the other experimental groups. Therefore, estrogen may have contributed to the prevention of increased inflammatory process and DIA injury in females submitted to exercise.


Assuntos
Diafragma/fisiologia , Condicionamento Físico Animal , Caracteres Sexuais , Animais , Núcleo Celular/metabolismo , Creatina Quinase/sangue , Feminino , Inflamação/patologia , Masculino , Camundongos Endogâmicos mdx , Fibras Musculares Esqueléticas/patologia , Receptores de Estrogênio/metabolismo
15.
Nutrition ; 43-44: 39-46, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28935143

RESUMO

OBJECTIVE: Oxidative stress, in addition to the absence of the dystrophin protein, has been considered an important regulator of Duchenne muscular dystrophy (DMD). Vitamin E presents an important role as a potent antioxidant and in preserving the integrity of the cell membrane. In this study, we evaluated the effects of vitamin E therapy on some physiological pathways that can contribute to muscle injury in the diaphragm muscle of mdx mice (the experimental model of DMD) such as CK levels, inflammatory response, oxidative stress, and the enzymatic antioxidant system. METHODS: Mdx mice (14 d old) received 40 mg vitamin E/kg daily by oral gavage for 14 d, followed by the removal of the diaphragm muscle. Control mdx mice and C57BL/10 mice received saline only for the same period and were used as controls. RESULTS: Vitamin E reduced the muscle fiber damage, oxidative stress, and inflammation process in the diaphragm muscle of mdx mice. CONCLUSIONS: Vitamin E improves skeletal muscle injury in mdx mice, promoting membrane repair and exhibiting antioxidant and antiinflammatory effects. These vitamin E effects suggest that this antioxidant therapy may be a relevant approach for dystrophinopathies.


Assuntos
Antioxidantes/administração & dosagem , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/patologia , Vitamina E/administração & dosagem , Animais , Diafragma/patologia , Modelos Animais de Doenças , Distrofina/deficiência , Feminino , Inflamação/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos
16.
PLoS One ; 12(8): e0182449, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28787441

RESUMO

Chronic inflammation and oxidative stress are striking features of Duchenne muscular dystrophy disease. Diacerhein is an anthraquinone, which exhibits anti-inflammatory and antioxidant properties. Based on their actions, the present study evaluated the effects of diacerhein against myonecrosis, oxidative stress and inflammatory response in the diaphragm muscle of mdx mice and compared these results to current treatment widely used in DMD patients, with a main focus on the impact of prednisone. The results demonstrated that diacerhein treatment prevented muscle damage indicated by a decrease in the IgG uptake by muscle fibers, lower CK levels in serum, reduction of fibers with central nuclei with a concomitant increase in fibers with peripheral nuclei. It also had an effect on the inflammatory process, decreasing the inflammatory area, macrophage staining and TNF-α and IL-1ß content. Regarding oxidative stress, diacerhein treatment was effective in reducing the ROS and lipid peroxidation in the diaphragm muscle from mdx mice. Compared to prednisone treatment, our findings demonstrated that diacerhein treatment improved the dystrophic phenotype in the diaphragm muscle of mdx mice similar to that of glucocorticoid therapy. In this respect, this work suggests that diacerhein has a potential use as an alternative drug in dystrophinopathy treatment and recommends that its anti-inflammatory and antioxidants properties in the dystrophic muscle should be better understood.


Assuntos
Antraquinonas/farmacologia , Diafragma/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiopatologia , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/fisiopatologia , Animais , Antraquinonas/uso terapêutico , Feminino , Masculino , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Necrose/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Fenótipo
17.
PLoS One ; 10(6): e0128567, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26083527

RESUMO

The present study evaluated low-level laser therapy (LLLT) effects on some physiological pathways that may lead to muscle damage or regeneration capacity in dystrophin-deficient muscle cells of mdx mice, the experimental model of Duchenne muscular dystrophy (DMD). Primary cultures of mdx skeletal muscle cells were irradiated only one time with laser and analyzed after 24 and 48 hours. The LLLT parameter used was 830 nm wavelengths at 5 J/cm² fluence. The following groups were set up: Ctrl (untreated C57BL/10 primary muscle cells), mdx (untreated mdx primary muscle cells), mdx LA 24 (mdx primary muscle cells - LLLT irradiated and analyzed after 24 h), and mdx LA 48 (mdx primary muscle cells - LLLT irradiated and analyzed after 48 h). The mdx LA 24 and mdx LA 48 groups showed significant increase in cell proliferation, higher diameter in muscle cells and decreased MyoD levels compared to the mdx group. The mdx LA 48 group showed significant increase in Myosin Heavy Chain levels compared to the untreated mdx and mdx LA 24 groups. The mdx LA 24 and mdx LA 48 groups showed significant increase in [Ca2+]i. The mdx group showed significant increase in H2O2 production and 4-HNE levels compared to the Ctrl group and LLLT treatment reduced this increase. GSH levels and GPx, GR and SOD activities increased in the mdx group. Laser treatment reduced the GSH levels and GR and SOD activities in dystrophic muscle cells. The mdx group showed significant increase in the TNF-α and NF-κB levels, which in turn was reduced by the LLLT treatment. Together, these results suggest that the laser treatment improved regenerative capacity and decreased inflammatory response and oxidative stress in dystrophic muscle cells, indicating that LLLT could be a helpful alternative therapy to be associated with other treatment for dystrophinopathies.


Assuntos
Distrofina/metabolismo , Inflamação/metabolismo , Lasers de Estado Sólido , Estresse Oxidativo/efeitos da radiação , Regeneração/efeitos da radiação , Animais , Cálcio/metabolismo , Células Cultivadas , Distrofina/genética , Peróxido de Hidrogênio/metabolismo , Lasers de Estado Sólido/uso terapêutico , Terapia com Luz de Baixa Intensidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/radioterapia , Cadeias Pesadas de Miosina/metabolismo , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA