Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 283(1833)2016 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-27335417

RESUMO

Squash was first domesticated in Mexico and is now found throughout North America (NA) along with Peponapis pruinosa, a pollen specialist bee species of the squash genus Cucurbita The origin and spread of squash cultivation is well-studied archaeologically and phylogenetically; however, no study has documented how cultivation of this or any other crop has influenced species in mutualistic interactions. We used molecular markers to reconstruct the demographic range expansion and colonization routes of P. pruinosa from its native range into temperate NA. Populations east of the Rocky Mountains expanded from the wild host plant's range in Mexico and were established by a series of founder events. Eastern North America was most likely colonized from squash bee populations in the present-day continental Midwest USA and not from routes that followed the Gulf and Atlantic coasts from Mexico. Populations of P. pruinosa west of the Rockies spread north from the warm deserts much more recently, showing two genetically differentiated populations with no admixture: one in California and the other one in eastern Great Basin. These bees have repeatedly endured severe bottlenecks as they colonized NA, following human spread of their Cucurbita pollen hosts during the Holocene.


Assuntos
Abelhas/genética , Cucurbita , Domesticação , Genética Populacional , Animais , Geografia , Humanos , México , Polinização , Estados Unidos
2.
Proc Biol Sci ; 280(1759): 20122703, 2013 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-23536593

RESUMO

Many short-lived desert organisms remain in diapause during drought. Theoretically, the cues desert species use to continue diapause through drought should differ depending on the availability of critical resources, but the unpredictability and infrequent occurrence of climate extremes and reduced insect activity during such events make empirical tests of this prediction difficult. An intensive study of a diverse bee-plant community through a drought event found that bee specialists of a drought-sensitive host plant were absent in the drought year in contrast to generalist bees and to specialist bees of a drought-insensitive host plant. Different responses of bee species to drought indicate that the diapause cues used by bee species allow them to reliably predict host availability. Species composition of the bee community in drought shifted towards mostly generalist species. However, we predict that more frequent and extended drought, predicted by climate change models for southwest North America, will result in bee communities that are species-poor and dominated by specialist species, as found today in the most arid desert region of North America.


Assuntos
Abelhas/fisiologia , Cadeia Alimentar , Larrea/crescimento & desenvolvimento , Polinização , Prosopis/crescimento & desenvolvimento , Animais , Arizona , Biodiversidade , Mudança Climática , Clima Desértico , Secas , Meio Ambiente , México , Estações do Ano , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA