Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Air Waste Manag Assoc ; 69(3): 373-390, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30339494

RESUMO

The 2017 revisions to the Regional Haze Rule clarify that visibility progress at Class I national parks and wilderness areas should be tracked on days with the highest anthropogenic contributions to haze (impairment). We compare the natural and anthropogenic contributions to haze in the western United States in 2011 estimated using the Environmental Protection Agency (EPA) recommended method and using model projections from the Comprehensive Air Quality Model with Extensions (CAMx) and the Particulate Source Apportionment Tool (PSAT). We do so because these two methods will be used by states to demonstrate visibility progress by 2028. If the two methods assume different natural and anthropogenic contributions, the projected benefits of reducing U.S. anthropogenic emissions will differ. The EPA method assumes that episodic elevated carbonaceous aerosols greater than an annual 95th percentile threshold are natural events. For western U.S. IMPROVE monitoring sites reviewed in this paper, CAMx-PSAT confirms these episodes are impacted by carbon from wildfire or prescribed fire events. The EPA method assumes that most of the ammonium sulfate is anthropogenic in origin. At most western sites CAMx-PSAT apportions more of the ammonium sulfate on the most impaired days to global boundary conditions and anthropogenic Canadian, Mexican, and offshore shipping emissions than to U.S. anthropogenic sources. For ammonium nitrate and coarse mass, CAMx-PSAT apportions greater contributions to U.S. anthropogenic sources than the EPA method assigns to total anthropogenic contributions. We conclude that for western IMPROVE sites, the EPA method is effective in selecting days that are likely to be impacted by anthropogenic emissions and that CAMx-PSAT is an effective approach to estimate U.S. source contributions. Improved inventories, particularly international and natural emissions, and further evaluation of global and regional model performance and PSAT attribution methods are recommended to increase confidence in modeled source characterization. Implications: The western states intend to use the CAMx model to project visibility progress by 2028. Modeled visibility response to changes in U.S. anthropogenic emissions may be less than estimated using the EPA assumptions based on total U.S. and international anthropogenic contributions to visibility impairment. Additional model improvements are needed to better account for contributions to haze from natural and international emissions in current and future modeling years. These improvements will allow more direct comparison of model and EPA estimates of natural and anthropogenic contributions to haze and future visibility progress.


Assuntos
Poluentes Atmosféricos/análise , Poluentes Atmosféricos/normas , Poluição do Ar/análise , Poluição do Ar/prevenção & controle , Monitoramento Ambiental/métodos , Oxidantes Fotoquímicos/análise , Canadá , México , Estados Unidos , United States Environmental Protection Agency
2.
Dis Aquat Organ ; 127(1): 65-69, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29256429

RESUMO

Toxoplasma gondii is a feline protozoan reported to cause morbidity and mortality in manatees and other marine mammals. Given the herbivorous nature of manatees, ingestion of oocysts from contaminated water or seagrass is presumed to be their primary mode of infection. The objectives of this study were to investigate oocyst contamination of seagrass beds in Puerto Rico and determine the seroprevalence of T. gondii in Antillean (Trichechus manatus manatus) and Florida (T. m. latirostris) manatees. Sera or plasma from Antillean (n = 5) and Florida (n = 351) manatees were tested for T. gondii antibodies using the modified agglutination test. No T. gondii DNA was detected via PCR in seagrass samples (n = 33) collected from Puerto Rico. Seroprevalence was 0%, suggesting a lower prevalence of T. gondii in these manatee populations than previously reported. This was the first study to investigate the potential oocyst contamination of the manatee diet, and similar studies are important for understanding the epidemiology of T. gondii in herbivorous marine mammals.


Assuntos
Plantas/parasitologia , Toxoplasma , Toxoplasmose Animal/transmissão , Trichechus manatus/parasitologia , Animais , Animais Selvagens , Florida/epidemiologia , Porto Rico/epidemiologia , Toxoplasmose Animal/sangue , Toxoplasmose Animal/parasitologia , Trichechus manatus/sangue
3.
Sci Total Environ ; 463-464: 61-71, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23792248

RESUMO

Leatherback sea turtles (Dermochelys coriacea) are long-distance migrants that travel thousands of km from foraging grounds to breeding and nesting grounds. These extensive journeys are fueled by ingestion of an estimated 300-400 kg of prey/d and likely result in exposure to high concentrations of environmental toxicants (e.g., mercury compounds). Increased bodily concentrations of mercury and its compounds in nesting female turtles may have detrimental effects on reproductive success. Leatherbacks have relatively low reproductive success compared with other sea turtles (global average hatching success ~50-60%). To assess toxicants and necessary nutrients as factors affecting leatherback turtle reproductive success at Sandy Point National Wildlife Refuge (SPNWR), St. Croix, U.S. Virgin Islands, we collected blood from nesting female leatherbacks and tissues from their hatchlings (blood from live turtles, liver and yolk sac from dead turtles). We compared the concentrations in those tissues to hatching and emergence success. We found that on SPNWR, hatching and emergence success were more closely related to seasonal factors than to total mercury and selenium concentrations in both nesting females and hatchlings. Selenium concentrations of nesting females were positively correlated with those of their hatchlings. Mercury and selenium in the liver of hatchlings were positively correlated with one another. Turtles with greater remigration intervals tended to have higher blood selenium concentrations, suggesting that selenium accumulates in leatherbacks through time. Through hazard quotients, we found evidence that selenium may be at or above concentrations that may cause physiologic harm to hatchlings. We also found evidence that population level differences exist for these trace elements. The concentrations of mercury and selenium established in this manuscript form a baseline for future toxicant studies.


Assuntos
Compostos de Mercúrio/análise , Compostos de Selênio/análise , Tartarugas/metabolismo , Animais , Animais Recém-Nascidos/metabolismo , Animais Recém-Nascidos/fisiologia , Feminino , Fígado/química , Compostos de Mercúrio/sangue , Reprodução/efeitos dos fármacos , Compostos de Selênio/sangue , Tartarugas/fisiologia , Ilhas Virgens Americanas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA