RESUMO
BACKGROUND: The mitogen-activated protein kinases 1 and 2 (MEK1, MEK2) are fundamental partners in the RAS-RAF-MEK-ERK pathway that is involved in regulation of cell proliferation, differentiation and survival. Downregulation of the MEK cascades has been implicated in acquiring of the malignant phenotype in various cancers. Somatic mutations in MEK1 gene (substitutions K57N, Q56P, D67N) were described in <1 % of non-small cell lung cancer (NSCLC) and they were more commonly reported in adenocarcinoma patients with current or former smoking status. MATERIALS AND METHODS: In the following study, we assessed the MEK1 gene mutations in 145 FFPE tissue samples from central nervous system (CNS) metastases of NSCLC using HRM-PCR and ASP-qPCR techniques. The studied group was heterogeneous in terms of histopathology and smoking status. The prevalence of the MEK1 gene mutation was correlated with the occurrence of mutations in KRAS, EGFR, DDR2, PIK3CA, NRAS, HER2, AKT1 and PTEN genes. RESULTS: Using HRM and ASP-qPCR methods we identified one (0.7 %; 1/145) MEK1 substitution (Q56P) in CNS metastases of NSCLC. The mutation was identified in a single, 50-year-old, current smoking men with adenocarcinoma (1.25 %; 1/80 of all adenocarcinomas). CONCLUSIONS: According to the current knowledge, the incidence of MEK1 gene mutation in CNS metastatic lesion of NSCLC is the first such report worldwide. The analysis of gene profile in cancer patients may extend the scope of molecularly targeted therapies used both in patients with primary and metastatic tumors of NSCLC.