Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Life (Basel) ; 14(7)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39063667

RESUMO

Many of the fundamental molecules of life share extraordinary pigment-like optical properties in the long-wavelength UV-C spectral region. These include strong photon absorption and rapid (sub-pico-second) dissipation of the induced electronic excitation energy into heat through peaked conical intersections. These properties have been attributed to a "natural selection" of molecules resistant to the dangerous UV-C light incident on Earth's surface during the Archean. In contrast, the "thermodynamic dissipation theory for the origin of life" argues that, far from being detrimental, UV-C light was, in fact, the thermodynamic potential driving the dissipative structuring of life at its origin. The optical properties were thus the thermodynamic "design goals" of microscopic dissipative structuring of organic UV-C pigments, today known as the "fundamental molecules of life", from common precursors under this light. This "UV-C Pigment World" evolved towards greater solar photon dissipation through more complex dissipative structuring pathways, eventually producing visible pigments to dissipate less energetic, but higher intensity, visible photons up to wavelengths of the "red edge". The propagation and dispersal of organic pigments, catalyzed by animals, and their coupling with abiotic dissipative processes, such as the water cycle, culminated in the apex photon dissipative structure, today's biosphere.

2.
Entropy (Basel) ; 25(7)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37510006

RESUMO

Evolutionary theory suggests that the origin, persistence, and evolution of biology is driven by the "natural selection" of characteristics improving the differential reproductive success of the organism in the given environment. The theory, however, lacks physical foundation, and, therefore, at best, can only be considered a heuristic narrative, of some utility for assimilating the biological and paleontological data at the level of the organism. On deeper analysis, it becomes apparent that this narrative is plagued with problems and paradoxes. Alternatively, non-equilibrium thermodynamic theory, derived from physical law, provides a physical foundation for describing material interaction with its environment at all scales. Here we describe a "natural thermodynamic selection" of characteristics of structures (or processes), based stochastically on increases in the global rate of dissipation of the prevailing solar spectrum. Different mechanisms of thermodynamic selection are delineated for the different biotic-abiotic levels, from the molecular level at the origin of life, up to the level of the present biosphere with non-linear coupling of biotic and abiotic processes. At the levels of the organism and the biosphere, the non-equilibrium thermodynamic description of evolution resembles, respectively, the Darwinian and Gaia descriptions, although the underlying mechanisms and the objective function of selection are fundamentally very different.

3.
Entropy (Basel) ; 24(8)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35893007

RESUMO

We have proposed that the abiogenesis of life around the beginning of the Archean may have been an example of "spontaneous" microscopic dissipative structuring of UV-C pigments under the prevailing surface ultraviolet solar spectrum. The thermodynamic function of these Archean pigments (the "fundamental molecules of life"), as for the visible pigments of today, was to dissipate the incident solar light into heat. We have previously described the non-equilibrium thermodynamics and the photochemical mechanisms which may have been involved in the dissipative structuring of the purines adenine and hypoxanthine from the common precursor molecules of hydrogen cyanide and water under this UV light. In this article, we extend our analysis to include the production of the other two important purines, guanine and xanthine. The photochemical reactions are presumed to occur within a fatty acid vesicle floating on a hot (∼80 ∘C) neutral pH ocean surface exposed to the prevailing UV-C light. Reaction-diffusion equations are resolved under different environmental conditions. Significant amounts of adenine (∼10-5 M) and guanine (∼10-6 M) are obtained within 60 Archean days, starting from realistic concentrations of the precursors hydrogen cyanide and cyanogen (∼10-5 M).

4.
Entropy (Basel) ; 24(1)2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35052103

RESUMO

Through a modern derivation of Planck's formula for the entropy of an arbitrary beam of photons, we derive a general expression for entropy production due to the irreversible process of the absorption of an arbitrary incident photon spectrum in material and its dissipation into an infrared-shifted grey-body emitted spectrum, with the rest being reflected or transmitted. Employing the framework of Classical Irreversible Thermodynamic theory, we define the generalized thermodynamic flow as the flow of photons from the incident beam into the material and the generalized thermodynamic force is, then, the entropy production divided by the photon flow, which is the entropy production per unit photon at a given wavelength. We compare the entropy production of different inorganic and organic materials (water, desert, leaves and forests) under sunlight and show that organic materials are the greater entropy-producing materials. Intriguingly, plant and phytoplankton pigments (including chlorophyll) reach peak absorption exactly where entropy production through photon dissipation is maximal for our solar spectrum 430<λ<550 nm, while photosynthetic efficiency is maximal between 600 and 700 nm. These results suggest that the evolution of pigments, plants and ecosystems has been towards optimizing entropy production, rather than photosynthesis. We propose using the wavelength dependence of global entropy production as a biosignature for discovering life on planets of other stars.

5.
Entropy (Basel) ; 23(2)2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33579010

RESUMO

The non-equilibrium thermodynamics and the photochemical reaction mechanisms are described which may have been involved in the dissipative structuring, proliferation and complexation of the fundamental molecules of life from simpler and more common precursors under the UVC photon flux prevalent at the Earth's surface at the origin of life. Dissipative structuring of the fundamental molecules is evidenced by their strong and broad wavelength absorption bands in the UVC and rapid radiationless deexcitation. Proliferation arises from the auto- and cross-catalytic nature of the intermediate products. Inherent non-linearity gives rise to numerous stationary states permitting the system to evolve, on amplification of a fluctuation, towards concentration profiles providing generally greater photon dissipation through a thermodynamic selection of dissipative efficacy. An example is given of photochemical dissipative abiogenesis of adenine from the precursor HCN in water solvent within a fatty acid vesicle floating on a hot ocean surface and driven far from equilibrium by the incident UVC light. The kinetic equations for the photochemical reactions with diffusion are resolved under different environmental conditions and the results analyzed within the framework of non-linear Classical Irreversible Thermodynamic theory.

6.
Entropy (Basel) ; 22(9)2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-33286709

RESUMO

Ultraviolet light incident on organic material can initiate its spontaneous dissipative structuring into chromophores which can catalyze their own replication. This may have been the case for one of the most ancient of all chromophores dissipating the Archean UVC photon flux, the nucleic acids. Oligos of nucleic acids with affinity to particular amino acids which foment UVC photon dissipation would most efficiently catalyze their own reproduction and thus would have been selected through non-equilibrium thermodynamic imperatives which favor dissipation. Indeed, we show here that those amino acids with characteristics most relevant to fomenting UVC photon dissipation are precisely those with greatest chemical affinity to their codons or anticodons. This could provide a thermodynamic basis for the specificity in the amino acid-nucleic acid interaction and an explanation for the accumulation of information in nucleic acids since this information is relevant to the optimization of dissipation of the externally imposed thermodynamic potentials. The accumulation of information in this manner provides a link between evolution and entropy production.

7.
Heliyon ; 5(6): e01902, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31249892

RESUMO

Non-equilibrium thermodynamics is a relevant framework from within which to address formidable difficulties encountered in explaining the origin of life; from molecular synthesis and complexation, enzyme-less proliferation, to evolution (including the acquisition of homochirality and information). From within this framework we have proposed that the origin of life was the origin of the dissipative structuring of organic pigments which became the fundamental molecules of life (e.g. RNA and DNA) proliferated through autocatalytic photochemical reactions under the thermodynamic imperative of dissipating the imposed UVC solar photon flux available at the Archean surface. Here we present experimental evidence demonstrating that the absorption and dissipation of UVC light by synthetic DNA of 25 base pairs (and also natural salmon sperm DNA) over a range of temperatures, including below their melting temperature, leads to denaturing. Since denaturing is a non-trivial step on route to enzyme-less replication, our data suggest the possibility of a dissipative route to DNA replication at the origin of life. Such a dissipation-replication relation provides a simple mechanism for the early accumulation of both homochirality and information. Possible mechanisms of UVC photon-induced denaturing of DNA are discussed.

8.
Life (Basel) ; 8(2)2018 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-29882802

RESUMO

Since a racemic mixture of chiral nucleotides frustrates the enzymeless extension of RNA and DNA, the origin of homochirality must be intimately connected with the origin of life. Homochirality theories have elected to presume abiotic mechanisms for prebiotic enantiomer enrichment and post amplification, but none, so far, has been generally accepted. Here I present a novel hypothesis for the procurement of homochirality from an asymmetry in right- over left-circularly polarized photon-induced denaturing of RNA and DNA at the Archean ocean surface as temperatures descended below that of RNA and DNA melting. This asymmetry is attributed to the small excess of right-handed circularly polarized submarine light during the afternoon, when surface water temperatures were highest and thus most conducive to photon-induced denaturing, and to a negative circular dichroism band extending from 230 to 270 nm for small oligos of RNA and DNA. Because D-nucleic acids have greater affinity for L-tryptophan due to stereochemistry, and because D-RNA/DNA+L-tryptophan complexes have an increased negative circular dichroism band between 230 and 270 nm, the homochirality of tryptophan can also be explained by this hypothesis. A numerical model is presented, demonstrating the efficacy of such a mechanism in procuring homochirality of RNA or DNA from an original racemic solution in as little as 270 Archean years.

9.
Heliyon ; 3(10): e00424, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29062973

RESUMO

Some fundamental molecules of life are suggested to have been formed, proliferated, and evolved through photochemical microscopic dissipative structuring and autocatalytic proliferation under the UV-C/UV-B solar environment prevalent at Earth's surface throughout the Archean. Evidence is given in the numerous salient characteristics of these, including their strong absorption in this spectral region and their rapid non-radiative excited state decay through inherent conical intersections. The examples of the dissipative structuring and dissipative proliferation of the purines and of single strand DNA are given. UV-C and UV-B-induced stationary state isomerizations and tautomerizations are shown to be crucial to the formation of the purines from hydrogen cyanide in an aqueous environment under UV-C light, while UV-C induced phosphorylation of nucleosides and denaturing of double helix RNA and DNA are similarly important to the production and proliferation of single strand DNA. This thermodynamic dissipation perspective provides a physical-chemical foundation for understanding the origin and evolution of life.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA