Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur Arch Psychiatry Clin Neurosci ; 271(1): 101-110, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32279145

RESUMO

Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation intervention investigated for the treatment of depression. Clinical results have been heterogeneous, partly due to the variability of electric field (EF) strength in the brain owing to interindividual differences in head anatomy. Therefore, we investigated whether EF strength was correlated with behavioral changes in 16 depressed patients using simulated electric fields in real patient data from a controlled clinical trial. We hypothesized that EF strength in the dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC), brain regions implicated in depression pathophysiology, would be associated with changes in depression, mood and anxiety scores. SimNIBS were used to simulate individual electric fields based on the MRI structural T1-weighted brain scans of depressed subjects. Linear regression models showed, at the end of the acute treatment phase, that simulated EF strength was inversely associated with negative affect in the bilateral ACC (left: ß = - 160.463, CI [- 291.541, - 29.385], p = 0.021; right: ß = - 189.194, CI [- 289.479, - 88.910], p = 0.001) and DLPFC (left: ß = - 93.210, CI [- 154.960, - 31.461], p = 0.006; right: ß = - 82.564, CI [- 142.867, - 22.262], p = 0.011) and with depression scores in the left ACC (ß = - 156.91, CI [- 298.51, - 15.30], p = 0.033). No association between positive affect or anxiety scores, and simulated EF strength in the investigated brain regions was found. To conclude, our findings show preliminary evidence that EF strength simulations might be associated with further behavioral changes in depressed patients, unveiling a potential mechanism of action for tDCS. Further studies should investigate whether individualization of EF strength in key brain regions impact clinical response.


Assuntos
Simulação por Computador , Depressão/terapia , Estimulação Transcraniana por Corrente Contínua , Adulto , Depressão/fisiopatologia , Córtex Pré-Frontal Dorsolateral , Feminino , Humanos , Masculino , Resultado do Tratamento
2.
J Neuroeng Rehabil ; 16(1): 141, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31730494

RESUMO

Transcranial Direct Current Stimulation (tDCS) is a non-invasive technique used to modulate neural tissue. Neuromodulation apparently improves cognitive functions in several neurologic diseases treatment and sports performance. In this study, we present a comprehensive, integrative review of tDCS for motor rehabilitation and motor learning in healthy individuals, athletes and multiple neurologic and neuropsychiatric conditions. We also report on neuromodulation mechanisms, main applications, current knowledge including areas such as language, embodied cognition, functional and social aspects, and future directions. We present the use and perspectives of new developments in tDCS technology, namely high-definition tDCS (HD-tDCS) which promises to overcome one of the main tDCS limitation (i.e., low focality) and its application for neurological disease, pain relief, and motor learning/rehabilitation. Finally, we provided information regarding the Transcutaneous Spinal Direct Current Stimulation (tsDCS) in clinical applications, Cerebellar tDCS (ctDCS) and its influence on motor learning, and TMS combined with electroencephalography (EEG) as a tool to evaluate tDCS effects on brain function.


Assuntos
Atletas , Córtex Motor/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Voluntários Saudáveis , Humanos , Aprendizagem , Córtex Motor/fisiopatologia , Doenças do Sistema Nervoso/reabilitação , Doenças do Sistema Nervoso/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA