Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(7): e28936, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38601536

RESUMO

Obesity is currently one of the most alarming pathological conditions due to the progressive increase in its prevalence. In the last decade, it has been associated with fine particulate matter suspended in the air (PM2.5). The purpose of this study was to explore the mechanistic interaction of PM2.5 with a high-fat diet (HFD) through the differential regulation of transcriptional signatures, aiming to identify the association of these particles with metabolically abnormal obesity. The research design was observational, using bioinformatic methods and an explanatory approach based on Rothman's causal model. We propose three new transcriptional signatures in murine adipose tissue. The sum of transcriptional differences between the group exposed to an HFD and PM2.5, compared to the control group, were 0.851, 0.265, and -0.047 (p > 0.05). The HFD group increased body mass by 20% with two positive biomarkers of metabolic impact. The group exposed to PM2.5 maintained a similar weight to the control group but exhibited three positive biomarkers. Enriched biological pathways (p < 0.05) included PPAR signaling, small molecule transport, adipogenesis genes, cytokine-cytokine receptor interaction, and HIF-1 signaling. Transcriptional regulation predictions revealed CpG islands and common transcription factors. We propose three new transcriptional signatures: FAT-PM2.5-CEJUS, FAT-PM2.5-UP, and FAT-PM2.5-DN, whose transcriptional regulation profile in adipocytes was statistically similar by dietary intake and HFD and exposure to PM2.5 in mice; suggesting a mechanistic interaction between both factors. However, HFD-exposed murines developed moderate metabolically abnormal obesity, and PM2.5-exposed murines developed severe abnormal metabolism without obesity. Therefore, in Rothman's terms, it is concluded that HFD is a sufficient cause of the development of obesity, and PM2.5 is a component cause of severe abnormal metabolism of obesity. These signatures would be integrated into a systemic biological process that would induce transcriptional regulation in trans, activating obesogenic biological pathways, restricting lipid mobilization pathways, decreasing adaptive thermogenesis and angiogenesis, and altering vascular tone thus inducing a severe metabolically abnormal obesity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA