Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(16)2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32784983

RESUMO

As key-components of the urban-drainage system, storm-drains and manholes are essential to the hydrological modeling of urban basins. Accurately mapping of these objects can help to improve the storm-drain systems for the prevention and mitigation of urban floods. Novel Deep Learning (DL) methods have been proposed to aid the mapping of these urban features. The main aim of this paper is to evaluate the state-of-the-art object detection method RetinaNet to identify storm-drain and manhole in urban areas in street-level RGB images. The experimental assessment was performed using 297 mobile mapping images captured in 2019 in the streets in six regions in Campo Grande city, located in Mato Grosso do Sul state, Brazil. Two configurations of training, validation, and test images were considered. ResNet-50 and ResNet-101 were adopted in the experimental assessment as the two distinct feature extractor networks (i.e., backbones) for the RetinaNet method. The results were compared with the Faster R-CNN method. The results showed a higher detection accuracy when using RetinaNet with ResNet-50. In conclusion, the assessed DL method is adequate to detect storm-drain and manhole from mobile mapping RGB images, outperforming the Faster R-CNN method. The labeled dataset used in this study is available for future research.

2.
Rev. bras. zootec ; 49: e20190110, 2020. ilus, tab, graf
Artigo em Inglês | VETINDEX | ID: biblio-1443844

RESUMO

The objective with this study was to analyze the body measurements of Girolando cattle, as well as measurements extracted from their images, to generate a model to understand which measures further explain the cattle body weight. Therefore, the experiment physically measured 34 Girolando cattle (two males and 32 females), for the following traits: heart girth (HGP), circumference of the abdomen, body length, occipito-ischial length, wither height, and hip height. In addition, images of the dorsum and the body lateral area of these animals allowed measurements of hip width (HWI), body length, tail distance to the neck, dorsum area (DAI), dorsum perimeter, wither height, hip height, body lateral area, perimeter of the lateral area, and rib height. The measurements extracted from the images were subjected to the stepwise regression method and regression-based machine learning algorithms. The HGp was the physical measure with stronger positive correlation with respect to body weight. In the stepwise method, the final model generated R² of 0.70 and RMSE of 42.52 kg and the equation. The linear regression and SVM algorithms obtained the best results, followed by discretization regression with random forests. The set of rules presented in this study can be recommended for estimating body weight in Girolando cattle, at a correlation coefficient of 0.71, by measurements of hip width and dorsum area, both extracted from cattle images.(AU)


Assuntos
Animais , Constituição Corporal , Bovinos/fisiologia , Peso Corporal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA