Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 5(7): e02071, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31360787

RESUMO

In this work, waste expanded polystyrene (WEPS) was irradiated with gamma rays, ranging doses from 100 kGy to 1,000 kGy. After irradiation, the WEPS had decrease on its glass transition temperature (Tg), as consequence of the scissions of its polymer chains. Then, the irradiated WEPS was sulfonated, and its degree of sulfonation (DS) was measured. The highest DS value, 46.6%, was obtained for an irradiation dose of 200 kGy. The sulfonated and irradiated polystyrene (denominated as iS-WEPS), was used as a support of iron oxide nanoparticles. Such composite system was denominated (FeO-NPs + iS-WEPS). The results show nanoparticle sizes of 31.5 nm containing 21.97% iron oxide. The composites followed a pseudo-second order model, with a maximum adsorption capacity of 20 mg/g, and an equilibrium time of 30 min, according to the Langmuir model. Moreover, the optimal conditions followed by the Fenton process were: pH = 3.2, H2O2 concentration = 0.32 mM/L, composite concentration (FeO-NPs + iS-WEPS) = 2 g/L, and a reaction time 20 min. Finally, 99% removal of indigo carmine dye was achieved, and a reduction of 83% of COD in textile wastewater.

2.
Molecules ; 19(2): 2261-85, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24566303

RESUMO

A sol-gel methodology has been duly developed in order to perform a controlled covalent coupling of tetrapyrrole macrocycles (e.g., porphyrins, phthalocyanines, naphthalocyanines, chlorophyll, etc.) to the pores of metal oxide networks. The resulting absorption and emission spectra intensities in the UV-VIS-NIR range have been found to depend on the polarity existing inside the pores of the network; in turn, this polarization can be tuned through the attachment of organic substituents to the tetrapyrrrole macrocycles before bonding them to the pore network. The paper shows clear evidence of the real possibility of maximizing fluorescence emissions from metal-free bases of substituted tetraphenylporphyrins, especially when these molecules are bonded to the walls of functionalized silica surfaces via the attachment of alkyl or aryl groups arising from the addition of organo-modified alkoxides.


Assuntos
Óxidos/química , Porfirinas/química , Dióxido de Silício/química , Absorção , Fluorescência , Géis , Metais/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA