Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Bacteriol ; 192(21): 5718-24, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20802042

RESUMO

Several aldehyde dehydrogenase (ALDH) complexes have been purified from the membranes of acetic acid bacteria. The enzyme structures and the chemical nature of the prosthetic groups associated with these enzymes remain a matter of debate. We report here on the molecular and catalytic properties of the membrane-bound ALDH complex of the diazotrophic bacterium Gluconacetobacter diazotrophicus. The purified ALDH complex is a heterodimer comprising two subunits of 79.7 and 50 kDa, respectively. Reversed-phase high-pressure liquid chromatography (HPLC) and electron paramagnetic resonance spectroscopy led us to demonstrate, for the first time, the unequivocal presence of a pyrroloquinoline quinone prosthetic group associated with an ALDH complex from acetic acid bacteria. In addition, heme b was detected by UV-visible light (UV-Vis) spectroscopy and confirmed by reversed-phase HPLC. The smaller subunit bears three cytochromes c. Aliphatic aldehydes, but not formaldehyde, were suitable substrates. Using ferricyanide as an electron acceptor, the enzyme showed an optimum pH of 3.5 that shifted to pH 7.0 when phenazine methosulfate plus 2,6-dichlorophenolindophenol were the electron acceptors. Acetaldehyde did not reduce measurable levels of the cytochrome b and c centers; however, the dithionite-reduced hemes were conveniently oxidized by ubiquinone-1; this finding suggests that cytochrome b and the cytochromes c constitute an intramolecular redox sequence that delivers electrons to the membrane ubiquinone.


Assuntos
Aldeído Desidrogenase/metabolismo , Citocromos b/metabolismo , Citocromos c/metabolismo , Gluconacetobacter/enzimologia , Cofator PQQ/química , Aldeído Desidrogenase/química , Aldeído Desidrogenase/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Membrana Celular , Citocromos b/química , Citocromos c/química , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , NADH NADPH Oxirredutases/metabolismo , Oxirredução
2.
J Appl Microbiol ; 99(5): 1130-40, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16238743

RESUMO

AIMS: Gluconacetobacter xylinum is well known for its ability to produce large amounts of cellulose, however, little is known about its cell physiology. Our goal was to study the respiratory metabolism and components of the respiratory system of this bacterium in static cultures. To reach our goal, a medium formulation had to be designed to improve cell growth and cellulose production together with a novel method for the recovery of cells from cellulose pellicles. METHODS AND RESULTS: Successive modifications of a nutrient medium improved G. xylinum cell growth 4.5-fold under static culture conditions. A blender homogenization procedure for the releasing of cells from the cellulose matrix gave a high yield of cells recovered. Respiratory activities of purified cells were greatly stimulated by exogenous substrates and showed to be resistant to KCN. Unexpectedly, exogenous NADH was oxidized at high rates. Cytochromes a, b, c and d were identified after spectral analyses. CONCLUSIONS: Partial bioenergetic characterization of G. xylinum cells allowed us to propose a scheme for its respiratory system. In addition, the growth medium for biomass production and the procedure for the efficient recovery of cells from cellulose pellicles were significantly improved. SIGNIFICANCE AND IMPACT OF THE STUDY: This work provides the first-ever bioenergetic characterization of G. xylinum grown in static cultures. In addition, a novel methodology to obtain purified cells in suitable quantities for biochemical research is described.


Assuntos
Celulose , Gluconacetobacter xylinus/fisiologia , Monóxido de Carbono/metabolismo , Meios de Cultura , Citocromos/metabolismo , Metabolismo Energético/fisiologia , Inibidores Enzimáticos/farmacologia , Gluconacetobacter xylinus/efeitos dos fármacos , Gluconacetobacter xylinus/ultraestrutura , Microscopia Eletrônica de Varredura/métodos , NAD/metabolismo , Oxirredução , Cianeto de Potássio/farmacologia
3.
Mol Microbiol ; 6(3): 301-8, 1992 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-1348101

RESUMO

A Saccharomyces cerevisiae glutamate auxotroph, lacking NADP-glutamate dehydrogenase (NADP-GDH) and glutamate synthase (GOGAT) activities, was complemented with a yeast genomic library. Clones were obtained which still lacked NADP-GDH but showed GOGAT activity. Northern analysis revealed that the DNA fragment present in the complementing plasmids coded for a 1.5kb mRNA. Since the only GOGAT enzyme so far purified from S. cerevisiae is made up of a small and a large subunit, the size of the mRNA suggested that the cloned DNA fragment could code for the GOGAT small subunit. Plasmids were purified and used to transform Escherichia coli glutamate auxotrophs. Transformants were only recovered when the recipient strain was an E. coli GDH-less mutant lacking the small GOGAT subunit. These data show that we have cloned the structural gene coding for the yeast small subunit (GUS2). Evidence is also presented indicating that the GOGAT enzyme which is synthesized in the E. coli transformants is a hybrid comprising the large E. coli subunit and the small S. cerevisiae subunit.


Assuntos
Escherichia coli/genética , Glutamato Sintase/genética , Glutamatos/metabolismo , Saccharomyces cerevisiae/genética , Northern Blotting , Clonagem Molecular , Escherichia coli/enzimologia , Genes Fúngicos , Teste de Complementação Genética , Glutamato Sintase/metabolismo , Ácido Glutâmico , Cinética , Mapeamento por Restrição , Saccharomyces cerevisiae/enzimologia , Temperatura , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA