Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Braz. J. Pharm. Sci. (Online) ; 58: e20110, 2022. graf
Artigo em Inglês | LILACS | ID: biblio-1403700

RESUMO

Abstract Molecular mechanisms involved in the development of muscle pain induced by static contraction are not completely elucidated. This study aimed to evaluate the involvement of the transient receptor potential vanilloid 1 (TRPV1) and the transient receptor potential ankyrin 1 (TRPA1) receptors expressed in peripheral and central terminals of primary afferents projected to gastrocnemius muscle and spinal cord in muscle pain induced by static contraction. An electrical stimulator provided the contraction of rat gastrocnemius muscle and mechanical muscle hyperalgesia was quantified through the pressure analgesimeter Randall-Selitto. AMG9810 and HC030031 were used. When administered in ipsilateral, but not contralateral gastrocnemius muscle, drugs prevented mechanical muscle hyperalgesia induced by static contraction. Similar results were obtained by intrathecal administrations. We propose that, in an inflammatory muscle pain, peripheral and central TRPV1 and TRPA1 work together to sensitize nociceptive afferent fibers, and that TRPV1 and TRPA1 receptors are potential target to control inflammatory muscle pain.


Assuntos
Animais , Masculino , Ratos , Anquirinas , Mialgia/induzido quimicamente , Medula Espinal/anormalidades , Preparações Farmacêuticas/administração & dosagem , Músculo Esquelético/lesões
2.
Neuroreport ; 32(3): 238-243, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33470759

RESUMO

Pharmacological agents directed to either opioid receptors or peroxisome proliferator-activated receptor gamma (PPARγ) at peripheral tissues reduce behavioral signs of persistent pain. Both receptors are expressed in muscle tissue, but the contribution of PPARγ activation to muscle pain and its modulation by opioid receptors remains unknown. To address this question, we first tested whether the endogenous PPARγ ligand 15d-PGJ2 would decrease mechanical hyperalgesia induced by carrageenan administration into the gastrocnemius muscle of rats. Next, we used receptor antagonists to determine whether the antihyperalgesic effect of 15-deoxyΔ-12,14-prostaglandin J2 (15d-PGJ2) was PPARγ- or opioid receptor-dependent. Three hours after carrageenan, muscle hyperalgesia was quantified with the Randall-Selitto test. 15d-PGJ2 prevented carrageenan-induced muscle hyperalgesia in a dose-dependent manner. The antihyperalgesic effect of 15d-PGJ2 was dose-dependently inhibited by either the PPARγ antagonist, 2-chloro-5-nitro-N-phenylbenzamide, or by the opioid receptor antagonist, naloxone. We conclude that 15d-PGJ2 targets PPARγ and opioid receptors to prevent muscle hyperalgesia. We suggest that local PPARγ receptors are important pharmacological targets for inflammatory muscle pain.


Assuntos
Hiperalgesia/metabolismo , Fatores Imunológicos/farmacologia , Músculo Esquelético/efeitos dos fármacos , Mialgia/metabolismo , PPAR gama/efeitos dos fármacos , Prostaglandina D2/análogos & derivados , Anilidas/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Carragenina/toxicidade , Hiperalgesia/induzido quimicamente , Músculo Esquelético/metabolismo , Mialgia/induzido quimicamente , Naloxona/farmacologia , Antagonistas de Entorpecentes/farmacologia , PPAR gama/antagonistas & inibidores , Prostaglandina D2/farmacologia , Ratos
3.
Purinergic Signal ; 15(2): 167-175, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31115830

RESUMO

P2X3 receptors are involved with several pain conditions. Muscle pain induced by static contraction has an important socioeconomic impact. Here, we evaluated the involvement of P2X3 receptors on mechanical muscle hyperalgesia and neutrophil migration induced by static contraction in rats. Also, we evaluated whether static contraction would be able to increase muscle levels of TNF-α and IL-1ß. Male Wistar rats were pretreated with the selective P2X3 receptor antagonist, A-317491, by intramuscular or intrathecal injection and the static contraction-induced mechanical muscle hyperalgesia was evaluated using the Randall-Selitto test. Neutrophil migration was evaluated by measurement of myeloperoxidase (MPO) kinetic-colorimetric assay and the cytokines TNF-α and IL-1ß by enzyme-linked immunosorbent assay. Intramuscular or intrathecal pretreatment with A-317491 prevented static contraction-induced mechanical muscle hyperalgesia. In addition, A-317491 reduced static contraction-induced mechanical muscle hyperalgesia when administered 30 and 60 min of the beginning of static contraction, but not after 30 and 60 min of the end of static contraction. Intramuscular A-317491 also prevented static contraction-induced neutrophil migration. In a period of 24 h, static contraction did not increase muscle levels of TNF-α and IL-1ß. These findings demonstrated that mechanical muscle hyperalgesia and neutrophil migration induced by static contraction are modulated by P2X3 receptors expressed on the gastrocnemius muscle and spinal cord dorsal horn. Also, we suggest that P2X3 receptors are important to the development but not to maintenance of muscle hyperalgesia. Therefore, P2X3 receptors can be pointed out as a target to musculoskeletal pain conditions induced by daily or work-related activities.


Assuntos
Mialgia/metabolismo , Neutrófilos , Receptores Purinérgicos P2X3/metabolismo , Animais , Movimento Celular , Hiperalgesia/etiologia , Hiperalgesia/metabolismo , Masculino , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Mialgia/etiologia , Neutrófilos/efeitos dos fármacos , Fenóis/farmacologia , Compostos Policíclicos/farmacologia , Antagonistas do Receptor Purinérgico P2X/farmacologia , Ratos , Ratos Wistar
4.
Neuroscience ; 358: 58-69, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28673715

RESUMO

Muscle pain is an important health issue and frequently related to static force exertion. The aim of this study is to evaluate whether peripheral inflammatory mechanisms are involved with static contraction-induced muscle pain in rats. To this end, we developed a model of muscle pain induced by static contraction performed by applying electrical pulses through electrodes inserted into muscle. We also evaluated the involvement of neutrophil migration, bradykinin, sympathetic amines and prostanoids. A single session of sustained static contraction of gastrocnemius muscle induced acute mechanical muscle hyperalgesia without affecting locomotor activity and with no evidence of structural damage in muscle tissue. Static contraction increased levels of creatine kinase but not lactate dehydrogenase, and induced neutrophil migration. Dexamethasone (glucocorticoid anti-inflammatory agent), DALBK (bradykinin B1 antagonist), Atenolol (ß1 adrenoceptor antagonist), ICI 118,551 (ß2 adrenoceptor antagonist), indomethacin (cyclooxygenase inhibitor), and fucoidan (non-specific selectin inhibitor) all reduced static contraction-induced muscle hyperalgesia; however, the bradykinin B2 antagonist, bradyzide, did not have an effect on static contraction-induced muscle hyperalgesia. Furthermore, an increased hyperalgesic response was observed when the selective bradykinin B1 agonist des-Arg9-bradykinin was injected into the previously stimulated muscle. Together, these findings demonstrate that static contraction induced mechanical muscle hyperalgesia in gastrocnemius muscle of rats is modulated through peripheral inflammatory mechanisms that are dependent on neutrophil migration, bradykinin, sympathetic amines and prostanoids. Considering the clinical relevance of muscle pain, we propose the present model of static contraction-induced mechanical muscle hyperalgesia as a useful tool for the study of mechanisms underlying static contraction-induced muscle pain.


Assuntos
Bradicinina/metabolismo , Hiperalgesia/fisiopatologia , Contração Muscular/fisiologia , Mialgia/etiologia , Neutrófilos/fisiologia , Análise de Variância , Animais , Antiarrítmicos/farmacologia , Anti-Inflamatórios/farmacologia , Atenolol/farmacologia , Antagonistas de Receptor B1 da Bradicinina/farmacologia , Creatina Quinase/metabolismo , Dexametasona/farmacologia , Modelos Animais de Doenças , Estimulação Elétrica/efeitos adversos , Hiperalgesia/induzido quimicamente , L-Lactato Desidrogenase/metabolismo , Locomoção/efeitos dos fármacos , Masculino , Neutrófilos/efeitos dos fármacos , Propanolaminas/farmacologia , Prostaglandinas , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA