Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JMIR Public Health Surveill ; 2(1): e30, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27251981

RESUMO

BACKGROUND: Approximately 40 countries in Central and South America have experienced local vector-born transmission of Zika virus, resulting in nearly 300,000 total reported cases of Zika virus disease to date. Of the cases that have sought care thus far in the region, more than 70,000 have been reported out of Colombia. OBJECTIVE: In this paper, we use nontraditional digital disease surveillance data via HealthMap and Google Trends to develop near real-time estimates for the basic (R) and observed (Robs) reproductive numbers associated with Zika virus disease in Colombia. We then validate our results against traditional health care-based disease surveillance data. METHODS: Cumulative reported case counts of Zika virus disease in Colombia were acquired via the HealthMap digital disease surveillance system. Linear smoothing was conducted to adjust the shape of the HealthMap cumulative case curve using Google search data. Traditional surveillance data on Zika virus disease were obtained from weekly Instituto Nacional de Salud (INS) epidemiological bulletin publications. The Incidence Decay and Exponential Adjustment (IDEA) model was used to estimate R0 and Robs for both data sources. RESULTS: Using the digital (smoothed HealthMap) data, we estimated a mean R0 of 2.56 (range 1.42-3.83) and a mean Robs of 1.80 (range 1.42-2.30). The traditional (INS) data yielded a mean R0 of 4.82 (range 2.34-8.32) and a mean Robs of 2.34 (range 1.60-3.31). CONCLUSIONS: Although modeling using the traditional (INS) data yielded higher R estimates than the digital (smoothed HealthMap) data, modeled ranges for Robs were comparable across both data sources. As a result, the narrow range of possible case projections generated by the traditional (INS) data was largely encompassed by the wider range produced by the digital (smoothed HealthMap) data. Thus, in the absence of traditional surveillance data, digital surveillance data can yield similar estimates for key transmission parameters and should be utilized in other Zika virus-affected countries to assess outbreak dynamics in near real time.

3.
Sci Rep ; 5: 9112, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25765943

RESUMO

Challenges with alternative data sources for disease surveillance include differentiating the signal from the noise, and obtaining information from data constrained settings. For the latter, events such as increases in hospital traffic could serve as early indicators of social disruption resulting from disease. In this study, we evaluate the feasibility of using hospital parking lot traffic data extracted from high-resolution satellite imagery to augment public health disease surveillance in Chile, Argentina and Mexico. We used archived satellite imagery collected from January 2010 to May 2013 and data on the incidence of respiratory virus illnesses from the Pan American Health Organization as a reference. We developed dynamical Elastic Net multivariable linear regression models to estimate the incidence of respiratory virus illnesses using hospital traffic and assessed how to minimize the effects of noise on the models. We noted that predictions based on models fitted using a sample of observations were better. The results were consistent across countries with selected models having reasonably low normalized root-mean-squared errors and high correlations for both the fits and predictions. The observations from this study suggest that if properly procured and combined with other information, this data source could be useful for monitoring disease trends.


Assuntos
Conjuntos de Dados como Assunto , Vigilância da População/métodos , Imagens de Satélites , Argentina , Chile , Estudos de Viabilidade , Hospitais , Humanos , México
4.
PLoS Negl Trop Dis ; 8(4): e2779, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24763320

RESUMO

BACKGROUND: Hantavirus pulmonary syndrome (HPS) is a life threatening disease transmitted by the rodent Oligoryzomys longicaudatus in Chile. Hantavirus outbreaks are typically small and geographically confined. Several studies have estimated risk based on spatial and temporal distribution of cases in relation to climate and environmental variables, but few have considered climatological modeling of HPS incidence for monitoring and forecasting purposes. METHODOLOGY: Monthly counts of confirmed HPS cases were obtained from the Chilean Ministry of Health for 2001-2012. There were an estimated 667 confirmed HPS cases. The data suggested a seasonal trend, which appeared to correlate with changes in climatological variables such as temperature, precipitation, and humidity. We considered several Auto Regressive Integrated Moving Average (ARIMA) time-series models and regression models with ARIMA errors with one or a combination of these climate variables as covariates. We adopted an information-theoretic approach to model ranking and selection. Data from 2001-2009 were used in fitting and data from January 2010 to December 2012 were used for one-step-ahead predictions. RESULTS: We focused on six models. In a baseline model, future HPS cases were forecasted from previous incidence; the other models included climate variables as covariates. The baseline model had a Corrected Akaike Information Criterion (AICc) of 444.98, and the top ranked model, which included precipitation, had an AICc of 437.62. Although the AICc of the top ranked model only provided a 1.65% improvement to the baseline AICc, the empirical support was 39 times stronger relative to the baseline model. CONCLUSIONS: Instead of choosing a single model, we present a set of candidate models that can be used in modeling and forecasting confirmed HPS cases in Chile. The models can be improved by using data at the regional level and easily extended to other countries with seasonal incidence of HPS.


Assuntos
Clima , Síndrome Pulmonar por Hantavirus/epidemiologia , Chile/epidemiologia , Processos Climáticos , Humanos , Umidade , Modelos Estatísticos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA