Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biol Futur ; 75(3): 279-288, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38990490

RESUMO

Earth harbors unique environments where only microorganisms adapted to extreme conditions, known as extremophiles, can survive. This study focused on a high-altitude meltwater pond, located in the Puna de Atacama, Dry Andes. The extremophilic bacteria of this habitat must adapt to a range of extremities, including cold and dry climate, high UV radiation, high daily temperature fluctuations, low-nutrient availability, and negative water balance. This study aimed to explore the taxonomic diversity of cultivable extremophilic bacteria from sediment samples of a desiccated, high-altitude, meltwater pond using media with different organic matter contents and different incubation temperatures. Based on the 16S rRNA gene sequence analysis, the isolates were identified as members of the phyla Actinobacteria, Proteobacteria, and Firmicutes. The most abundant genera were Arthrobacter and Pseudoarthrobacter. The isolates had oligocarbophilic and psychrotrophic properties, suggesting that they have adapted to the extreme environmental parameters of their natural habitats. The results indicate a positive correlation between nutrient concentration and temperature tolerance.


Assuntos
Altitude , Bactérias , Lagoas , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Lagoas/microbiologia , Chile , Extremófilos , RNA Ribossômico 16S/genética , Microbiologia da Água
2.
Astrobiology ; 20(6): 754-765, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32525738

RESUMO

Microbial ecology of permafrost, due to its ecological and astrobiological importance, has been in the focus of studies in past decades. Although permafrost is an ancient and stable environment, it is also subjected to current climate changes. Permafrost degradation often results in generation of thaw ponds, a phenomenon not only reported mainly from polar regions but also present in high-altitude permafrost environments. Our knowledge about microbial communities of thaw ponds in these unique, remote mountain habitats is sparse. This study presents the first culture collection and results of the next-generation DNA sequencing (NGS) analysis of bacterial communities inhabiting a high-altitude permafrost thaw pond. In February 2016, a permafrost thaw pond on the Ojos del Salado at 5900 m a.s.l. (meters above sea level) was sampled as part of the Hungarian Dry Andes Research Programme. A culture collection of 125 isolates was established, containing altogether 11 genera belonging to phyla Bacteroidetes, Actinobacteria, and Proteobacteria. Simplified bacterial communities with a high proportion of candidate and hitherto uncultured bacteria were revealed by Illumina MiSeq NGS. Water of the thaw pond was dominated by Bacteroidetes and Proteobacteria, while in the sediment of the lake and permafrost, members of Acidobacteria, Actinobacteria, Bacteroidetes, Patescibacteria, Proteobacteria, and Verrucomicrobia were abundant. This permafrost habitat can be interesting as a potential Mars analog.


Assuntos
Altitude , Bactérias/genética , Variação Genética , Pergelissolo/microbiologia , Lagoas/microbiologia , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Contagem de Colônia Microbiana , Sedimentos Geológicos/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Análise de Componente Principal , América do Sul , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA