Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Res Neurobiol ; 4: 100068, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36589675

RESUMO

Insulin-like growth factor-1 (IGF-1) plays critical roles in the development of the central nervous system (CNS), including the retina, regulating cell proliferation, differentiation, and survival. Here, we investigated the role of IGF-1 on retinal cell proliferation using primary cultures from rat neural retina. Our data show that IGF-1 stimulates retinal cell proliferation and regulates the expression of neurotrophic factors, such as interleukin-4 and brain-derived neurotrophic factor. In addition, our results indicates that IGF-1-induced retinal cell proliferation requires activation of multiple signaling pathways, including phosphatidylinositol 3-kinase, protein kinase Src, phospholipase-C, protein kinase C delta, and mitogen-activated protein kinase pathways. We further show that activation of matrix metalloproteinases and epidermal growth factor receptor is also necessary for IGF-1 enhancing retinal cell proliferation. Overall, these results unveil potential mechanisms by which IGF-1 ensures retinal cell proliferation and support the notion that manipulation of IGF-1 signaling may be beneficial in CNS disorders associated with abnormal cell proliferation.

2.
Neurochem Res ; 34(5): 884-90, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-18802750

RESUMO

Protein kinase C (PKC) plays a key role in cellular events including proliferation, survival and differentiation. Our previous study showed the effect of phorbol 12-myristate 13-acetate (PMA), a PKC activator, inducing a decrease in retinal cells proliferation. This effect was mediated by muscarinic type 1 receptors (M1) activation and brain derived neurotrophic factor (BDNF) treatment also induced a decrease in cell proliferation. Based on these results we analyzed the expression of either M1 receptors or BDNF following PMA treatment of retinal cell cultures. Our data demonstrated that PMA induced a decrease in both protein expressions after 48 h in culture. However, after 45 min, PMA induced a transient increase in BDNF expression and a decrease in M1 receptors expression. Analyzing the expression of M1 receptors and BDNF during the postnatal development in vivo, we observed a decrease in both proteins. Taken together our results suggest the involvement of PKC in the control of M1 expression in retinal cells.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/biossíntese , Proteína Quinase C/fisiologia , Receptor Muscarínico M1/biossíntese , Retina/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Ativação Enzimática , Regulação da Expressão Gênica , Ratos , Retina/citologia , Retina/crescimento & desenvolvimento , Acetato de Tetradecanoilforbol/farmacologia
3.
Neurochem Int ; 42(1): 73-80, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12441170

RESUMO

Protein kinase C (PKC) is involved in several cell events including proliferation, survival and differentiation. The aim of this work was to investigate the role of PKC activation on retinal cells proliferation. We demonstrated that PKC activation by phorbol 12-myristate 13-acetate (PMA), a tumor promoter phorbol ester, is able to decrease retinal cells proliferation. This effect was mediated by M1 receptors and dependent on intracellular Ca(2+) increase, tyrosine kinase activity, phosphatidylinositol 3-kinase activity, polypeptide secretion and activation of TrkB receptors. The effect of PMA was not via activation of mitogen-activated protein (MAP) kinase. Carbamylcholine and brain derived neurotrophic factor were both able to decrease retinal cells proliferation to the same level as PMA did. Our results suggest that PKC activation leads to a decrease in retinal cells proliferation through the release of acetylcholine and brain derived neurotrophic factor in the culture, and activation of M1 and TrkB receptors, respectively.


Assuntos
Acetilcolina/fisiologia , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Carbacol/farmacologia , Proteínas do Olho/metabolismo , Inibidores do Crescimento/farmacologia , Pirenzepina/análogos & derivados , Proteína Quinase C/metabolismo , Receptores Muscarínicos/efeitos dos fármacos , Retina/efeitos dos fármacos , Acetato de Tetradecanoilforbol/farmacologia , Alcaloides , Células Amácrinas/efeitos dos fármacos , Animais , Atropina/farmacologia , Benzofenantridinas , Cálcio/farmacologia , Divisão Celular/efeitos dos fármacos , Células Cultivadas/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Proteínas do Olho/efeitos dos fármacos , Isoenzimas/efeitos dos fármacos , Isoenzimas/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Agonistas Muscarínicos/farmacologia , Antagonistas Muscarínicos/farmacologia , Oxotremorina/farmacologia , Fenantridinas/farmacologia , Pirenzepina/farmacologia , Proteína Quinase C/efeitos dos fármacos , Ratos , Receptor Muscarínico M1 , Receptores Muscarínicos/fisiologia , Retina/citologia , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA