Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 9(7)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37504703

RESUMO

Fungal pigments, including melanin, are recognized as promising materials for biomedical, environmental, and technological applications. In previous studies, we have demonstrated that the DOPA-melanin produced by the MEL1 mutant of Aspergillus nidulans exhibits antioxidant, anti-inflammatory, and antimicrobial activities without any cytotoxic or mutagenic effects, suggesting its potential use in pharmaceuticals. In order to increase the yield of this pigment and reduce the costs of its large-scale production, the present study aimed to evaluate agro-industrial by-products, sugarcane molasses, vinasse, and corn steep liquor as inexpensive substrates for fungal growth using experimental design methodology. According to the results obtained, the optimal composition of the culture medium was 0.81% (v/v) vinasse and 1.62% (w/v) glucose, which promoted a greater production of melanin (225.39 ± 4.52 mg g-1 of biomass), representing a 2.25-fold increase compared with the condition before optimization (100.32 mg.g-1 of biomass). Considering the amount of biomass obtained in the optimized condition, it was possible to obtain a total melanin production of 1 g L-1. Therefore, this formulation of a less complex and low-cost culture medium composition makes the large-scale process economically viable for future biotechnological applications of melanin produced by A. nidulans.

2.
Microb Cell Fact ; 21(1): 278, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36585654

RESUMO

BACKGROUND: Melanin is a natural pigment that can be applied in different fields such as medicine, environment, pharmaceutical, and nanotechnology. Studies carried out previously showed that the melanin produced by the mel1 mutant from Aspergillus nidulans exhibits antioxidant, anti-inflammatory, and antimicrobial activities, without any cytotoxic or mutagenic effect. These results taken together suggest the potential application of melanin from A. nidulans in the pharmaceutical industry. In this context, this study aimed to evaluate the effect of factors L-tyrosine, glucose, glutamic acid, L-DOPA, and copper on melanin production by the mel1 mutant and to establish the optimal concentration of these factors to maximize melanin production. RESULTS: The results showed that L-DOPA, glucose, and copper sulfate significantly affected melanin production, where L-DOPA was the only factor that exerted a positive effect on melanin yield. Besides, the tyrosinase activity was higher in the presence of L-DOPA, considered a substrate required for enzyme activation, this would explain the increased production of melanin in this condition. After establishing the optimal concentrations of the analyzed factors, the melanin synthesis was increased by 640% compared to the previous studies. CONCLUSIONS: This study contributed to elucidating the mechanisms involved in melanin synthesis in A. nidulans as well as to determining the optimal composition of the culture medium for greater melanin production that will make it possible to scale the process for a future biotechnological application.


Assuntos
Aspergillus nidulans , Melaninas , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Levodopa , Tirosina/metabolismo , Antioxidantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA