Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chaos ; 32(3): 033114, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35364836

RESUMO

The emergence of synchronized behavior is a direct consequence of networking dynamical systems. Naturally, strict instances of this phenomenon, such as the states of complete synchronization, are favored or even ensured in networks with a high density of connections. Conversely, in sparse networks, the system state-space is often shared by a variety of coexistent solutions. Consequently, the convergence to complete synchronized states is far from being certain. In this scenario, we report the surprising phenomenon in which completely synchronized states are made the sole attractor of sparse networks by removing network links, the sparsity-driven synchronization. This phenomenon is observed numerically for nonlocally coupled Kuramoto networks and verified analytically for locally coupled ones. In addition, we unravel the bifurcation scenario underlying the network transition to completely synchronized behavior. Furthermore, we present a simple procedure, based on the bifurcations in the thermodynamic limit, that determines the minimum number of links to be removed in order to ensure complete synchronization. Finally, we propose an application of the reported phenomenon as a control scheme to drive complete synchronization in high connectivity networks.

2.
Phys Rev E ; 101(2-1): 022206, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32168557

RESUMO

The geomagnetic field's dipole undergoes polarity reversals in irregular time intervals. Particularly long periods without reversals (of the order of 10^{7} yr), called superchrons, have occurred at least three times in the Phanerozoic (since 541 million years ago). We provide observational evidence for high non-Gaussianity in the vicinity of a transition to and from a geomagnetic superchron, consisting of a sharp increase in high-order moments (skewness and kurtosis) of the dipole's distribution. Such an increase in the moments is a universal feature of crisis-induced intermittency in low-dimensional dynamical systems undergoing global bifurcations. This implies a temporal variation of the underlying parameters of the physical system. Through a low-dimensional system that models the geomagnetic reversals, we show that the increase in the high-order moments during transitions to geomagnetic superchrons is caused by the progressive destruction of global periodic orbits exhibiting both polarities as the system approaches a merging bifurcation. We argue that the non-Gaussianity in this system is caused by the redistribution of the attractor around local cycles as global ones are destroyed.

3.
Phys Rev E ; 100(5-1): 052201, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31869887

RESUMO

A state-dependent vulnerability of synchronization is shown to exist in a complex network composed of numerically simulated electronic circuits. We demonstrate that disturbances to the local dynamics of network units can produce different outcomes to synchronization depending on the current state of its trajectory. We address such state dependence by systematically perturbing the synchronized system at states equally distributed along its trajectory. We find the states at which the perturbation desynchronizes the network to be complicatedly mixed with the ones that restore synchronization. Additionally, we characterize perturbation sets obtained for consecutive states by defining a safety index between them. Finally, we demonstrate that the observed vulnerability is due to the existence of an unstable chaotic set in the system's state space.

4.
Sci Rep ; 8(1): 17340, 2018 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-30478345

RESUMO

A correction has been published and is appended to both the HTML and PDF versions of this paper. The error has not been fixed in the paper.

5.
Sci Rep ; 7: 42351, 2017 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-28181582

RESUMO

Nonlinear dynamical systems may be exposed to tipping points, critical thresholds at which small changes in the external inputs or in the system's parameters abruptly shift the system to an alternative state with a contrasting dynamical behavior. While tipping in a fold bifurcation of an equilibrium is well understood, much less is known about tipping of oscillations (limit cycles) though this dynamics are the typical response of many natural systems to a periodic external forcing, like e.g. seasonal forcing in ecology and climate sciences. We provide a detailed analysis of tipping phenomena in periodically forced systems and show that, when limit cycles are considered, a transient structure, so-called channel, plays a fundamental role in the transition. Specifically, we demonstrate that trajectories crossing such channel conserve, for a characteristic time, the twisting behavior of the stable limit cycle destroyed in the fold bifurcation of cycles. As a consequence, this channel acts like a "ghost" of the limit cycle destroyed in the critical transition and instead of the expected abrupt transition we find a smooth one. This smoothness is also the reason that it is difficult to precisely determine the transition point employing the usual indicators of tipping points, like critical slowing down and flickering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA