Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Plant Physiol ; 293: 154170, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38271894

RESUMO

Although significant efforts to produce carotenoid-enriched foods either by biotechnology or traditional breeding strategies have been carried out, our understanding of how changes in the carotenoid biosynthesis might affect overall plant performance remains limited. Here, we investigate how the metabolic machinery of well characterized tomato carotenoid mutant plants [namely crimson (old gold-og), Delta carotene (Del) and tangerine (t)] adjusts itself to varying carotenoid biosynthesis and whether these adjustments are supported by a reprogramming of photosynthetic and central metabolism in the source organs (leaves). We observed that mutations og, Del and t did not greatly affect vegetative growth, leaf anatomy and gas exchange parameters. However, an exquisite metabolic reprogramming was recorded on the leaves, with an increase in levels of amino acids and reduction of organic acids. Taken together, our results show that despite minor impacts on growth and gas exchange, carbon flux is extensively affected, leading to adjustments in tomato leaves metabolism to support changes in carotenoid biosynthesis on fruits (sinks). We discuss these data in the context of our current understanding of metabolic adjustments and carotenoid biosynthesis as well as regarding to improving human nutrition.


Assuntos
Solanum lycopersicum , Humanos , Solanum lycopersicum/genética , Frutas/metabolismo , Reprogramação Metabólica , Carotenoides/metabolismo , Plantas/metabolismo , Folhas de Planta/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Plant Cell Environ ; 46(12): 3721-3736, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37615309

RESUMO

In cellular circumstances where carbohydrates are scarce, plants can use alternative substrates for cellular energetic maintenance. In plants, the main protein reserve is present in the chloroplast, which contains most of the total leaf proteins and represents a rich source of nitrogen and amino acids. Autophagy plays a key role in chloroplast breakdown, a well-recognised symptom of both natural and stress-induced plant senescence. Remarkably, an autophagic-independent route of chloroplast degradation associated with chloroplast vesiculation (CV) gene was previously demonstrated. During extended darkness, CV is highly induced in the absence of autophagy, contributing to the early senescence phenotype of atg mutants. To further investigate the role of CV under dark-induced senescence conditions, mutants with low expression of CV (amircv) and double mutants amircv1xatg5 were characterised. Following darkness treatment, no aberrant phenotypes were observed in amircv single mutants; however, amircv1xatg5 double mutants displayed early senescence and altered dismantling of chloroplast and membrane structures under these conditions. Metabolic characterisation revealed that the functional lack of both CV and autophagy leads to higher impairment of amino acid release and differential organic acid accumulation during starvation conditions. The data obtained are discussed in the context of the role of CV and autophagy, both in terms of cellular metabolism and the regulation of chloroplast degradation.


Assuntos
Arabidopsis , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Carboidratos , Aminoácidos/metabolismo , Autofagia/fisiologia , Folhas de Planta/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Plant Physiol Biochem ; 201: 107862, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37413941

RESUMO

Evidence suggests that guard cells have higher rate of phosphoenolpyruvate carboxylase (PEPc)-mediated dark CO2 assimilation than mesophyll cells. However, it is unknown which metabolic pathways are activated following dark CO2 assimilation in guard cells. Furthermore, it remains unclear how the metabolic fluxes throughout the tricarboxylic acid (TCA) cycle and associated pathways are regulated in illuminated guard cells. Here we carried out a13C-HCO3 labelling experiment in tobacco guard cells harvested under continuous dark or during the dark-to-light transition to elucidate principles of metabolic dynamics downstream of CO2 assimilation. Most metabolic changes were similar between dark-exposed and illuminated guard cells. However, illumination altered the metabolic network structure of guard cells and increased the 13C-enrichment in sugars and metabolites associated to the TCA cycle. Sucrose was labelled in the dark, but light exposure increased the 13C-labelling and leads to more drastic reductions in the content of this metabolite. Fumarate was strongly labelled under both dark and light conditions, while illumination increased the 13C-enrichment in pyruvate, succinate and glutamate. Only one 13C was incorporated into malate and citrate in either dark or light conditions. Our results indicate that several metabolic pathways are redirected following PEPc-mediated CO2 assimilation in the dark, including gluconeogenesis and the TCA cycle. We further showed that the PEPc-mediated CO2 assimilation provides carbons for gluconeogenesis, the TCA cycle and glutamate synthesis and that previously stored malate and citrate are used to underpin the specific metabolic requirements of illuminated guard cells.


Assuntos
Dióxido de Carbono , Malatos , Malatos/metabolismo , Dióxido de Carbono/metabolismo , Células do Mesofilo/metabolismo , Fosfoenolpiruvato Carboxilase/metabolismo , Citratos/metabolismo
4.
Biomolecules ; 13(5)2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37238601

RESUMO

Among the adenylate carriers identified in Arabidopsis thaliana, only the AMP/ATP transporter ADNT1 shows increased expression in roots under waterlogging stress conditions. Here, we investigated the impact of a reduced expression of ADNT1 in A. thaliana plants submitted to waterlogging conditions. For this purpose, an adnt1 T-DNA mutant and two ADNT1 antisense lines were evaluated. Following waterlogging, ADNT1 deficiency resulted in a reduced maximum quantum yield of PSII electron transport (significantly for adnt1 and antisense Line 10), indicating a higher impact caused by the stress in the mutants. In addition, ADNT1 deficient lines showed higher levels of AMP in roots under nonstress condition. This result indicates that the downregulation of ADNT1 impacts the levels of adenylates. ADNT1-deficient plants exhibited a differential expression pattern of hypoxia-related genes with an increase in non-fermenting-related-kinase 1 (SnRK1) expression and upregulation of adenylate kinase (ADK) under stress and non-stress conditions. Together, these results indicated that the lower expression of ADNT1 is associated with an early "hypoxic status" due to the perturbation of the adenylate pool caused by reduced AMP import by mitochondria. This perturbation, which is sensed by SnRK1, results in a metabolic reprogramming associated with early induction of the fermentative pathway in ADNT1 deficient plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Transporte da Membrana Mitocondrial , Humanos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Hipóxia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo
5.
Plant Physiol Biochem ; 193: 36-49, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36323196

RESUMO

The metabolic fluxes throughout the tricarboxylic acid cycle (TCAC) are inhibited in the light by the mitochondrial thioredoxin (TRX) system. However, it is unclear how this system orchestrates the fluxes throughout the TCAC and associated pathways in the dark. Here we carried out a13C-HCO3 labelling experiment in Arabidopsis leaves from wild type (WT) and mutants lacking TRX o1 (trxo1), TRX h2 (trxh2), or both NADPH-dependent TRX reductase A and B (ntra ntrb) exposed to 0, 30 and 60 min of dark or light conditions. No 13C-enrichment in TCAC metabolites in illuminated WT leaves was observed. However, increased succinate content was found in parallel to reductions in Ala in the light, suggesting the latter operates as an alternative carbon source for succinate synthesis. By contrast to WT, all mutants showed substantial changes in the content and 13C-enrichment in TCAC metabolites under both dark and light conditions. Increased 13C-enrichment in glutamine in illuminated trxo1 leaves was also observed, strengthening the idea that TRX o1 restricts in vivo carbon fluxes from glycolysis and the TCAC to glutamine. We further demonstrated that both photosynthetic and gluconeogenic fluxes toward glucose are increased in trxo1 and that the phosphoenolpyruvate carboxylase (PEPc)-mediated 13C-incorporation into malate is higher in trxh2 mutants, as compared to WT. Our results collectively provide evidence that TRX h2 and the mitochondrial NTR/TRX system regulate the metabolic fluxes throughout the TCAC and associated pathways, including glycolysis, gluconeogenesis and the synthesis of glutamine in a light-independent manner.


Assuntos
Arabidopsis , Tiorredoxinas , Tiorredoxinas/metabolismo , Ciclo do Ácido Cítrico , Glutamina/metabolismo , Oxirredução , Arabidopsis/metabolismo , Tiorredoxina h , Carbono/metabolismo , Succinatos/metabolismo
6.
Plant Cell Environ ; 45(9): 2682-2695, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35818668

RESUMO

Plants are constantly exposed to environmental changes that affect their performance. Metabolic adjustments are crucial to controlling energy homoeostasis and plant survival, particularly during stress. Under carbon starvation, coordinated reprogramming is initiated to adjust metabolic processes, which culminate in premature senescence. Notwithstanding, the regulatory networks that modulate transcriptional control during low energy remain poorly understood. Here, we show that the WRKY45 transcription factor is highly induced during both developmental and dark-induced senescence. The overexpression of Arabidopsis WRKY45 resulted in an early senescence phenotype characterized by a reduction of maximum photochemical efficiency of photosystem II and chlorophyll levels in the later stages of darkness. The detailed metabolic characterization showed significant changes in amino acids coupled with the accumulation of organic acids in WRKY45 overexpression lines during dark-induced senescence. Furthermore, the markedly upregulation of alternative oxidase (AOX1a, AOX1d) and electron transfer flavoprotein/ubiquinone oxidoreductase (ETFQO) genes suggested that WRKY45 is associated with a dysregulation of mitochondrial signalling and the activation of alternative respiration rather than amino acids catabolism regulation. Collectively our results provided evidence that WRKY45 is involved in the plant metabolic reprogramming following carbon starvation and highlight the potential role of WRKY45 in the modulation of mitochondrial signalling pathways.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Aminoácidos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Carbono/metabolismo , Escuridão , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo , Senescência Vegetal , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Plant Cell Rep ; 41(9): 1907-1929, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35833988

RESUMO

KEY MESSAGE: High pigment mutants in tomato (Solanum lycopersicum L.), a loss of function in the control of photomorphogenesis, with greater pigment production, show altered growth, greater photosynthesis, and a metabolic reprogramming. High pigment mutations cause plants to be extremely responsive to light and produce excessive pigmentation as well as fruits with high levels of health-beneficial nutrients. However, the association of these traits with changes in the physiology and metabolism of leaves remains poorly understood. Here, we performed a detailed morphophysiological and metabolic characterization of high pigment 1 (hp1) and high pigment 2 (hp2) mutants in tomato (Solanum lycopersicum L. 'Micro-Tom') plants under different sunlight conditions (natural light, 50% shading, and 80% shading). These mutants occur in the DDB1 (hp1) and DET1 (hp2) genes, which are related to the regulation of photomorphogenesis and chloroplast development. Our results demonstrate that these mutations delay plant growth and height, by affecting physiological and metabolic parameters at all stages of plant development. Although the mutants were characterized by higher net CO2 assimilation, lower stomatal limitation, and higher carboxylation rates, with anatomical changes that favour photosynthesis, we found that carbohydrate levels did not increase, indicating a change in the energy flow. Shading minimized the differences between mutants and the wild type or fully reversed them in the phenotype at the metabolic level. Our results indicate that the high levels of pigments in hp1 and hp2 mutants represent an additional energy cost for these plants and that extensive physiological and metabolic reprogramming occurs to support increased pigment biosynthesis.


Assuntos
Solanum lycopersicum , Carbono/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Solanum lycopersicum/metabolismo , Fotossíntese/genética , Pigmentação/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Plantas/metabolismo
8.
Plant J ; 108(4): 1213-1233, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34486764

RESUMO

13 C-Metabolic flux analysis (13 C-MFA) has greatly contributed to our understanding of plant metabolic regulation. However, the generation of detailed in vivo flux maps remains a major challenge. Flux investigations based on nuclear magnetic resonance have resolved small networks with high accuracy. Mass spectrometry (MS) approaches have broader potential, but have hitherto been limited in their power to deduce flux information due to lack of atomic level position information. Herein we established a gas chromatography (GC) coupled to MS-based approach that provides 13 C-positional labelling information in glucose, malate and glutamate (Glu). A map of electron impact (EI)-mediated MS fragmentation was created and validated by 13 C-positionally labelled references via GC-EI-MS and GC-atmospheric pressure chemical ionization-MS technologies. The power of the approach was revealed by analysing previous 13 C-MFA data from leaves and guard cells, and 13 C-HCO3 labelling of guard cells harvested in the dark and after the dark-to-light transition. We demonstrated that the approach is applicable to established GC-EI-MS-based 13 C-MFA without the need for experimental adjustment, but will benefit in the future from paired analyses by the two GC-MS platforms. We identified specific glucose carbon atoms that are preferentially labelled by photosynthesis and gluconeogenesis, and provide an approach to investigate the phosphoenolpyruvate carboxylase (PEPc)-derived 13 C-incorporation into malate and Glu. Our results suggest that gluconeogenesis and the PEPc-mediated CO2 assimilation into malate are activated in a light-independent manner in guard cells. We further highlight that the fluxes from glycolysis and PEPc toward Glu are restricted by the mitochondrial thioredoxin system in illuminated leaves.


Assuntos
Carbono/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Análise do Fluxo Metabólico/métodos , Isótopos de Carbono/análise , Ácido Glutâmico/análise , Glicólise , Espectroscopia de Ressonância Magnética , Malatos/análise , Fotossíntese , Folhas de Planta/metabolismo
9.
Sci Rep ; 11(1): 7098, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33782506

RESUMO

Hexokinases (HXKs) and fructokinases (FRKs) are the only two families of enzymes in plants that have been identified as able to phosphorylate Glucose (Glc) and Fructose (Fru). Glc can only be phosphorylated in plants by HXKs, while Fru can be phosphorylated by either HXKs or FRKs. The various subcellular localizations of HXKs in plants indicate that they are involved in diverse functions, including anther dehiscence and pollen germination, stomatal closure in response to sugar levels, stomatal aperture and reducing transpiration. Its association with modulating programmed cell death, and responses to oxidative stress and pathogen infection (abiotic and biotic stresses) also have been reported. To extend our understanding about the function of HXK-like genes in the response of Prunus rootstocks to abiotic stress, we performed a detailed bioinformatic and functional analysis of hexokinase 3-like genes (HXK3s) from two Prunus rootstock genotypes, 'M.2624' (Prunus cerasifera Ehrh × P. munsoniana W.Wight & Hedrick) and 'M.F12/1' (P. avium L.), which are tolerant and sensitive to hypoxia stress, respectively. A previous large-scale transcriptome sequencing of roots of these rootstocks, showed that this HXK3-like gene that was highly induced in the tolerant genotype under hypoxia conditions. In silico analysis of gene promoters from M.2624 and M.F12/1 genotypes revealed regulatory elements that could explain differential transcriptional profiles of HXK3 genes. Subcellular localization was determinates by both bioinformatic prediction and expression of their protein fused to the green fluorescent protein (GFP) in protoplasts and transgenic plants of Arabidopsis. Both approaches showed that they are expressed in plastids. Metabolomics analysis of Arabidopsis plants ectopically expressing Prunus HXK3 genes revealed that content of several metabolites including phosphorylated sugars (G6P), starch and some metabolites associated with the TCA cycle were affected. These transgenic Arabidopsis plants showed improved tolerance to salt and drought stress under growth chamber conditions. Our results suggest that Prunus HXK3 is a potential candidate for enhancing tolerance to salt and drought stresses in stone fruit trees and other plants.


Assuntos
Arabidopsis/fisiologia , Hexoquinase/genética , Prunus/genética , Tolerância ao Sal/genética , Sequência de Aminoácidos , Arabidopsis/genética , Hexoquinase/química , Hipóxia/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Homologia de Sequência de Aminoácidos
10.
Plant J ; 104(5): 1149-1168, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32996222

RESUMO

Nicotinamide adenine dinucleotide (NAD) plays a central role in redox metabolism in all domains of life. Additional roles in regulating posttranslational protein modifications and cell signaling implicate NAD as a potential integrator of central metabolism and programs regulating stress responses and development. Here we found that NAD negatively impacts stomatal development in cotyledons of Arabidopsis thaliana. Plants with reduced capacity for NAD+ transport from the cytosol into the mitochondria or the peroxisomes exhibited reduced numbers of stomatal lineage cells and reduced stomatal density. Cotyledons of plants with reduced NAD+ breakdown capacity and NAD+ -treated cotyledons also presented reduced stomatal number. Expression of stomatal lineage-related genes was repressed in plants with reduced expression of NAD+ transporters as well as in plants treated with NAD+ . Impaired NAD+ transport was further associated with an induction of abscisic acid (ABA)-responsive genes. Inhibition of ABA synthesis rescued the stomatal phenotype in mutants deficient in intracellular NAD+ transport, whereas exogenous NAD+ feeding of aba-2 and ost1 seedlings, impaired in ABA synthesis and ABA signaling, respectively, did not impact stomatal number, placing NAD upstream of ABA. Additionally, in vivo measurement of ABA dynamics in seedlings of an ABA-specific optogenetic reporter - ABAleon2.1 - treated with NAD+ showed increases in ABA content suggesting that NAD+ impacts on stomatal development through ABA synthesis and signaling. Our results demonstrate that intracellular NAD+ homeostasis as set by synthesis, breakdown and transport is essential for normal stomatal development, and provide a link between central metabolism, hormone signaling and developmental plasticity.


Assuntos
Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , NAD/metabolismo , Estômatos de Plantas/crescimento & desenvolvimento , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cotilédone/efeitos dos fármacos , Cotilédone/metabolismo , Regulação da Expressão Gênica de Plantas , Mitocôndrias/metabolismo , Mutação , NAD/farmacologia , Estômatos de Plantas/metabolismo
11.
Front Plant Sci ; 11: 794, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32595679

RESUMO

Enhanced photosynthesis is strictly associated with to productivity and it can be accomplished by genetic approaches through identification of genetic variation. By using a Solanum pennellii introgression lines (ILs) population, it was previously verified that, under normal (CO2), IL 2-5 and 2-6 display increased photosynthetic rates by up to 20% in comparison with their parental background (M82). However, the physiological mechanisms involved in the enhanced CO2 assimilation exhibited by these lines remained unknown, precluding their use for further biotechnological applications. Thereby, here we attempted to uncover the physiological factors involved in the upregulation of photosynthesis in ILs 2-5 and 2-6 under normal (CO2) as well as under elevated (CO2). The results provide evidence for increased biochemical capacity (higher maximum carboxylation velocity and maximum electron transport rate) in plants from IL 2-5 and 2-6, whereas the diffusive components (stomatal and mesophyll conductances) were unaltered in these ILs in comparison to M82. Our analyses revealed that the higher photosynthetic rate observed in these ILs was associated with higher levels of starch as well as total protein levels, specially increased RuBisCO content. Further analyses performed in plants under high (CO2) confirmed that biochemical properties are involved in genetic variation on chromosome 2 related to enhanced photosynthesis.

12.
Plant J ; 100(3): 487-504, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31278825

RESUMO

Nicotinamide adenine dinucleotide (NAD+ ) is an essential coenzyme required for all living organisms. In eukaryotic cells, the final step of NAD+ biosynthesis is exclusively cytosolic. Hence, NAD+ must be imported into organelles to support their metabolic functions. Three NAD+ transporters belonging to the mitochondrial carrier family (MCF) have been biochemically characterized in plants. AtNDT1 (At2g47490), focus of the current study, AtNDT2 (At1g25380), targeted to the inner mitochondrial membrane, and AtPXN (At2g39970), located in the peroxisomal membrane. Although AtNDT1 was presumed to reside in the chloroplast membrane, subcellular localization experiments with green fluorescent protein (GFP) fusions revealed that AtNDT1 locates exclusively in the mitochondrial membrane in stably transformed Arabidopsis plants. To understand the biological function of AtNDT1 in Arabidopsis, three transgenic lines containing an antisense construct of AtNDT1 under the control of the 35S promoter alongside a T-DNA insertional line were evaluated. Plants with reduced AtNDT1 expression displayed lower pollen viability, silique length, and higher rate of seed abortion. Furthermore, these plants also exhibited an increased leaf number and leaf area concomitant with higher photosynthetic rates and higher levels of sucrose and starch. Therefore, lower expression of AtNDT1 was associated with enhanced vegetative growth but severe impairment of the reproductive stage. These results are discussed in the context of the mitochondrial localization of AtNDT1 and its important role in the cellular NAD+ homeostasis for both metabolic and developmental processes in plants.


Assuntos
Antiporters/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , NAD/metabolismo , Antiporters/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Transporte Biológico , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cloroplastos/metabolismo , Citosol/metabolismo , Proteínas de Fluorescência Verde , Homeostase , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mutagênese Insercional , Proteínas de Transporte de Nucleotídeos , Peroxissomos/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Pólen/genética , Pólen/crescimento & desenvolvimento , Pólen/fisiologia , Amido/metabolismo
13.
J Plant Physiol ; 238: 29-39, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31129469

RESUMO

Control of gene expression and induction of cellular protection mechanisms are two important processes that plants employ to protect themselves against abiotic stresses. ABA-, stress, and ripening-induced (ASR) proteins have been identified to participate in such responses. Previous studies have proposed that these proteins can act as transcription factors and as molecular chaperones protecting transgenic plants against stresses; however a gene network regulated by ASRs has not been explored. To expand our knowledge on the function of these proteins in cereals, we present the functional characterization of a barley ASR gene. Expression of HvASR5 was almost ubiquitous in different organs and responded to ABA and to different stress treatments. When expressed ectopically, HvASR5 was able to confer drought and salt stress tolerance to Arabidopsis thaliana and to improve growth performance of rice plants under stress conditions. A transcriptomic analysis with two transgenic rice lines overexpressing HvASR5 helped to identify potential downstream targets and understand ASR-regulated cellular processes. HvASR5 up-regulated the expression of a distinct set of genes associated with stress responses, metabolic processes (particularly carbohydrate metabolism), as well as reproduction and development. These data, together with the confirmed nuclear and cytoplasmic localization of HvASR5, further support the hypothesis that HvASR5 can also carry out roles as molecular protector and transcriptional regulator.


Assuntos
Genes de Plantas/genética , Hordeum/genética , Oryza/genética , Proteínas de Plantas/fisiologia , Clonagem Molecular , Perfilação da Expressão Gênica , Genes de Plantas/fisiologia , Hordeum/metabolismo , Hordeum/fisiologia , Oryza/metabolismo , Oryza/fisiologia , Filogenia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Análise de Sequência de DNA , Estresse Fisiológico
14.
New Phytol ; 223(4): 1873-1887, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31099898

RESUMO

Stomatal responses to environmental signals differ substantially between ferns and angiosperms. However, the mechanisms that lead to such different responses remain unclear. Here we investigated the extent to which leaf metabolism contributes to coordinate the differential stomatal behaviour among ferns and angiosperms. Stomata from all species were responsive to light and CO2 transitions. However, fern stomatal responses were slower and minor in both absolute and relative terms. Angiosperms have higher stomatal density, but this is not correlated with speed of stomatal closure. The metabolic responses throughout the diel course and under different CO2 conditions differ substantially among ferns and angiosperms. Higher sucrose content and an increased sucrose-to-malate ratio during high CO2 -induced stomatal closure was observed in angiosperms compared to ferns. Furthermore, the speed of stomatal closure was positively and negatively correlated with sugars and organic acids, respectively, suggesting that the balance between sugars and organic acids aids in explaining the faster stomatal responses of angiosperms. Our results suggest that mesophyll-derived metabolic signals, especially those associated with sucrose and malate, may also be important to modulate the differential stomatal behaviour between ferns and angiosperms, providing important new information that helps in understanding the metabolism-mediated mechanisms regulating stomatal movements across land plant evolution.


Assuntos
Dióxido de Carbono/metabolismo , Gleiquênias/fisiologia , Luz , Magnoliopsida/fisiologia , Malatos/metabolismo , Estômatos de Plantas/metabolismo , Estômatos de Plantas/efeitos da radiação , Sacarose/metabolismo , Análise Discriminante , Gleiquênias/efeitos da radiação , Análise dos Mínimos Quadrados , Magnoliopsida/efeitos da radiação , Metaboloma/efeitos da radiação , Fotossíntese/efeitos da radiação , Análise de Componente Principal
15.
Plant Cell Environ ; 42(2): 448-465, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30066402

RESUMO

Auxin modulates a range of plant developmental processes including embryogenesis, organogenesis, and shoot and root development. Recent studies have shown that plant hormones also strongly influence metabolic networks, which results in altered growth phenotypes. Modulating auxin signalling pathways may therefore provide an opportunity to alter crop performance. Here, we performed a detailed physiological and metabolic characterization of tomato (Solanum lycopersicum) mutants with either increased (entire) or reduced (diageotropica-dgt) auxin signalling to investigate the consequences of altered auxin signalling on photosynthesis, water use, and primary metabolism. We show that reduced auxin sensitivity in dgt led to anatomical and physiological modifications, including altered stomatal distribution along the leaf blade and reduced stomatal conductance, resulting in clear reductions in both photosynthesis and water loss in detached leaves. By contrast, plants with higher auxin sensitivity (entire) increased the photosynthetic capacity, as deduced by higher Vcmax and Jmax coupled with reduced stomatal limitation. Remarkably, our results demonstrate that auxin-sensitive mutants (dgt) are characterized by impairments in the usage of starch that led to lower growth, most likely associated with decreased respiration. Collectively, our findings suggest that mutations in different components of the auxin signalling pathway specifically modulate photosynthetic and respiratory processes.


Assuntos
Ácidos Indolacéticos/metabolismo , Mitocôndrias/metabolismo , Fotossíntese/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais , Solanum lycopersicum/crescimento & desenvolvimento , Clorofila/metabolismo , Solanum lycopersicum/metabolismo , Solanum lycopersicum/fisiologia , Folhas de Planta/anatomia & histologia , Estômatos de Plantas/fisiologia , Transdução de Sinais/fisiologia , Água/metabolismo
16.
Front Plant Sci ; 9: 1689, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30524461

RESUMO

The pivotal role of phytohormones during fruit development and ripening is considered established knowledge in plant biology. Perhaps less well-known is the growing body of evidence suggesting that organic acids play a key function in plant development and, in particular, in fruit development, maturation and ripening. Here, we critically review the connection between organic acids and the development of both climacteric and non-climacteric fruits. By analyzing the metabolic content of different fruits during their ontogenetic trajectory, we noticed that the content of organic acids in the early stages of fruit development is directly related to the supply of substrates for respiratory processes. Although different organic acid species can be found during fruit development in general, it appears that citrate and malate play major roles in this process, as they accumulate on a broad range of climacteric and non-climacteric fruits. We further highlight the functional significance of changes in organic acid profile in fruits due to either the manipulation of fruit-specific genes or the use of fruit-specific promoters. Despite the complexity behind the fluctuation in organic acid content during fruit development and ripening, we extend our understanding on the importance of organic acids on fruit metabolism and the need to further boost future research. We suggest that engineering organic acid metabolism could improve both qualitative and quantitative traits of crop fruits.

17.
New Phytol ; 216(4): 1018-1033, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28984366

RESUMO

Contents 1018 I. 1018 II. 1019 III. 1022 IV. 1025 V. 1026 VI. 1029 1030 References 1030 SUMMARY: Stomata are leaf epidermal structures consisting of two guard cells surrounding a pore. Changes in the aperture of this pore regulate plant water-use efficiency, defined as gain of C by photosynthesis per leaf water transpired. Stomatal aperture is actively regulated by reversible changes in guard cell osmolyte content. Despite the fact that guard cells can photosynthesize on their own, the accumulation of mesophyll-derived metabolites can seemingly act as signals which contribute to the regulation of stomatal movement. It has been shown that malate can act as a signalling molecule and a counter-ion of potassium, a well-established osmolyte that accumulates in the vacuole of guard cells during stomatal opening. By contrast, their efflux from guard cells is an important mechanism during stomatal closure. It has been hypothesized that the breakdown of starch, sucrose and lipids is an important mechanism during stomatal opening, which may be related to ATP production through glycolysis and mitochondrial metabolism, and/or accumulation of osmolytes such as sugars and malate. However, experimental evidence supporting this theory is lacking. Here we highlight the particularities of guard cell metabolism and discuss this in the context of the guard cells themselves and their interaction with the mesophyll cells.


Assuntos
Fotossíntese , Estômatos de Plantas/fisiologia , Metabolismo dos Carboidratos , Células do Mesofilo/metabolismo , Amido/metabolismo
18.
Plant Signal Behav ; 12(11): e1377877, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-28933654

RESUMO

Autophagy is a highly conserved cellular mechanism in eukaryotes allowing the degradation of cell constituents. It is of crucial significance in both cellular homeostasis and nutrient recycling. During energy limited conditions plant cells can metabolize alternative respiratory substrates, such as amino acids, providing electrons to the mitochondrial metabolism via the tricarboxylic acid (TCA) cycle or electron transfer flavoprotein/ electron transfer flavoprotein ubiquinone oxidoreductase (ETF/ETFQO) system. Our recent study reveals the importance of autophagy in the supply of amino acids to provide energy through alternative pathways of respiration during carbon starvation. This fact apart, autophagy seems to have more generalized effects related not only to amino acid catabolism but also to metabolism in general. By further comparing the metabolic data obtained with atg mutants with those of mutants involved in the alternative pathways of respiration, we observed clear differences between these mutants, pointing out additional effects of the autophagy deficiency on metabolism of Arabidopsis leaves. Collectively, our data point to an interdependence between mitochondrial metabolism and autophagy and suggest an exquisite regulation of primary metabolism under low energetic conditions.


Assuntos
Arabidopsis/metabolismo , Arabidopsis/fisiologia , Autofagia/fisiologia , Respiração Celular/fisiologia , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Arabidopsis/genética , Autofagia/genética , Respiração Celular/genética , Escuridão , Metabolismo Energético/genética , Metabolismo Energético/fisiologia , Folhas de Planta/genética
19.
Plant Physiol ; 175(3): 1068-1081, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28899959

RESUMO

Malate is a central metabolite involved in a multiplicity of plant metabolic pathways, being associated with mitochondrial metabolism and playing significant roles in stomatal movements. Vacuolar malate transport has been characterized at the molecular level and is performed by at least one carrier protein and two channels in Arabidopsis (Arabidopsis thaliana) vacuoles. The absence of the Arabidopsis tonoplast Dicarboxylate Transporter (tDT) in the tdt knockout mutant was associated previously with an impaired accumulation of malate and fumarate in leaves. Here, we investigated the consequences of this lower accumulation on stomatal behavior and photosynthetic capacity as well as its putative metabolic impacts. Neither the stomatal conductance nor the kinetic responses to dark, light, or high CO2 were highly affected in tdt plants. In addition, we did not observe any impact on stomatal aperture following incubation with abscisic acid, malate, or citrate. Furthermore, an effect on photosynthetic capacity was not observed in the mutant lines. However, leaf mitochondrial metabolism was affected in the tdt plants. Levels of the intermediates of the tricarboxylic acid cycle were altered, and increases in both light and dark respiration were observed. We conclude that manipulation of the tonoplastic organic acid transporter impacted mitochondrial metabolism, while the overall stomatal and photosynthetic capacity were unaffected.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Fumaratos/metabolismo , Malatos/metabolismo , Mutação/genética , Transportadores de Ânions Orgânicos/genética , Estômatos de Plantas/fisiologia , Vacúolos/metabolismo , Aminoácidos/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Respiração Celular , Clorofila/metabolismo , Clorofila A , Ciclo do Ácido Cítrico , Fluorescência , Técnicas de Inativação de Genes , Metaboloma , Transportadores de Ânions Orgânicos/metabolismo , Fotoperíodo , Fotossíntese , Estômatos de Plantas/citologia , Amido/metabolismo
20.
Food Chem ; 237: 372-378, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28764009

RESUMO

Mango is a highly perishable fruit with a short post-harvest time due to the intense metabolic activity after harvesting. In attempt to evaluate the effects of chitosan in mango fruits, it was treated with 0%, 1%, 2% or 3% of chitosan solutions, placed into plastic trays, and stored at room temperature. Changes in physical and chemical parameters were evaluated. Chitosan delayed the climacteric peak, water loss and firmness. Further, few changes in soluble solid content, titratable acidity, pH of the pulp as well as in sugar content and decreased starch degradation were observed. Altogether, our results suggest chitosan edible coating effectively prolongs the quality attributes, affecting basic mitochondrial respiration and starch degradation rate.


Assuntos
Mangifera , Carbono , Quitosana , Frutas , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA