RESUMO
For migratory animals, conditions during the nonbreeding period may carry-over to influence spring migration performance. Animals in low-quality habitats are predicted to be in poorer condition, show later migration timing, and travel at slower speeds. This can result in subsequent negative effects on fitness. We tested the hypothesis that nonbreeding season body condition and habitat quality carry-over to affect spring migration performance of a long-distance migratory songbird, the Wood Thrush (Hylocichla mustelina). We tracked individual birds between multiple breeding sites in North America and nonbreeding sites in Central America. First, we compared body condition of nonbreeding birds migrating to the same general region of the breeding range with spring migration performance (timing, speed, and duration) obtained from light-level geolocators. Second, we assessed the Normalized Difference Vegetation Index (NDVI) as a proxy for nonbreeding habitat quality, and predicted that birds from wetter habitat or in wetter years (higher NDVI) would show improved migration performance relative to birds from drier sites. We found no evidence of individual-level carry-over effects of nonbreeding season body condition on spring migration performance. Lower NDVI of nonbreeding habitat resulted in delayed spring migration departure, but this effect disappeared by arrival at breeding sites. Birds occupying drier nonbreeding sites migrated faster and for fewer days, compensating for their relatively late departure. We also documented a broader pattern in NDVI and migration timing and distance, in that birds that occupied the wettest areas in the southern part of the nonbreeding range departed significantly later and migrated farther. Our results suggest that individual carry-over effects of nonbreeding habitat quality may be compensated for by a faster and shorter migration strategy. At a broad scale, consistently later spring timing and longer migration distances were associated with the wettest areas (the highest quality habitats) of the Wood Thrush non-breeding range. This supports the theory that high-quality habitats offset the costs of farther migration, resulting in a leap-frog migration pattern.
Assuntos
Migração Animal/fisiologia , Ecossistema , Aves Canoras/fisiologia , Animais , América Central , América do NorteRESUMO
Many migratory songbirds spend their non-breeding season in tropical humid forests, where climate change is predicted to increase the severity and frequency of droughts and decrease rainfall. For conservation of these songbirds, it is critical to understand how resources during the non-breeding season are affected by seasonal patterns of drying, and thereby predict potential long-term effects of climate change. We studied habitat quality for a declining tropical forest-dwelling songbird, the wood thrush (Hylocichla mustelina), and tested the hypothesis that habitat moisture and arthropod abundance are drivers of body condition during the overwintering period. We examined habitat moisture, abundance of arthropods and fruit, and condition of individual birds (n = 418) in three habitat types--mature forest, mature forest with increased presence of human activity, and riparian scrub--from October to April. We found a strong pattern of habitat drying from October (wet season) to March (prior to spring migration) in all habitats, with concurrent declines in arthropod and fruit abundance. Body condition of birds also declined (estimated ~5 % decline over the wintering period), with no significant difference by habitat. Relatively poor condition (low body condition index, low fat and pectoral muscles scores) was equally apparent in all habitat types in March. Climate change is predicted to increase the severity of dry seasons in Central America, and our results suggest that this could negatively affect the condition of individual wood thrushes.
Assuntos
Constituição Corporal , Mudança Climática , Florestas , Estações do Ano , Aves Canoras/fisiologia , Migração Animal/fisiologia , Animais , Artrópodes/fisiologia , Belize , Conservação dos Recursos Naturais , Densidade Demográfica , Aves Canoras/anatomia & histologiaRESUMO
Many migratory animals are experiencing rapid population declines, but migration data with the geographic scope and resolution to quantify the complex network of movements between breeding and nonbreeding regions are often lacking. Determining the most frequently used migration routes and nonbreeding regions for a species is critical for understanding population dynamics and making effective conservation decisions. We tracked the migration of individual Wood Thrushes (Hylocichla mustelina) (n = 102) from across their range with light-level geolocators and, for the first time, quantified migration routes and wintering regions for distinct breeding populations. We identified regional and species-level migratory connectivity networks for this declining songbird by combining our tracking results with range-wide breeding abundance estimates and forest cover data. More than 50% of the species occupied the eastern wintering range (Honduras to Costa Rica), a region that includes only one-third of all wintering habitat and that is undergoing intensive deforestation. We estimated that half of all Wood Thrushes in North America migrate south through Florida in fall, whereas in spring approximately 73% funnel northward through a narrow span along the central U.S. Gulf Coast (88-93°W). Identifying migratory networks is a critical step for conservation of songbirds and we demonstrated with Wood Thrushes how it can highlight conservation hotspots for regional populations and species as a whole.