Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 47(24): 11519-26, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18975933

RESUMO

The electronic absorption spectrum of fac-[Mn(CO)(3)(phen)imH](+), fac-1 in CH(2)Cl(2) is characterized by a strong absorption band at 378 nm (epsilon(max) = 3200 mol(-1) L cm(-1)). On the basis of quantum mechanical calculations, the visible absorption band has been assigned to ligand-to-ligand charge-transfer (LLCT, im-->phen) and metal-to-ligand charge-transfer (MLCT, Mn-->phen) charge transfer transition. When fac-1 in CH(2)Cl(2) is irradiated with 350 nm continuous light, the absorption features are gradually shifted to represent those of the meridional complex mer-[Mn(CO)(3)(phen)imH](+), mer-1 (lambda(max) = 556 nm). The net photoreaction under these conditions is a photoisomerization, although, the presence of the long-lived radical species was also detected by (1)H NMR and FTIR spectroscopy. 355 nm continuous photolysis of fac-1 in CH(3)CN solution also gives the long-lived intermediate which is readily trapped by metylviologen (MV(2+)) giving rise to the formation of the one-electron reduced methyl viologen (MV(*+)). The UV-vis spectra monitored during the slow (45 min) thermal back reaction exhibited isosbestic conversion at 426 nm. On the basis of spectroscopic techniques and quantum mechanical calculations, the role of the radicals produced is analyzed.


Assuntos
Radicais Livres/química , Imidazóis/química , Manganês/química , Compostos Organometálicos/química , Transporte de Elétrons , Cinética , Ligantes , Luz , Metais/química , Modelos Moleculares , Fotoquímica , Fotólise , Espectrofotometria , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
2.
J Inorg Biochem ; 99(10): 1973-82, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16054222

RESUMO

Myo-inositol-1,2,3,4,5,6-hexakisphosphate, also known as phytate, is a natural metal chelate present in cereals, an important feedstock worldwide. This article reports the characterization of three metal storage model complexes: the homometallic Mn(II) myo-inositol-1,2,3,4,5,6-hexakisphosphate (IP6), the heterometallic Zn(II), Mn(II) analogue Na4MnZn4(C6H6O24P6) x (NO3)2 x 8H2O (MnZn4IP6) and the homometallic Zn(II) metal complex Na3Zn5(C6H6O24P6)OH x 9H2O (Zn5IP6). The techniques of high-resolution 23Na, 13C and 31P NMR, electron paramagnetic resonance (EPR) and X-ray photoelectron spectroscopy (XPS) were applied in this study. The complexation of Zn(II) and Mn(II) by phosphate groups of IP6 is demonstrated by NMR and XPS results. 13C NMR results show a conformation for IP6 consisting of five equatorial phosphate groups to one axial group showing only one chemical environment for Zn and two for Mn, when characterized by XPS and EPR, in both Mn complexes. These results support, for the first time, a probable supramacromolecular structure for phytate complexes of transition metals. Based on the similarity between the EPR spectra of wheat seeds and that of the MnZn4IP6 compound, the manganese storage centers in wheat grains can be assigned to similar heterometallic phytate complexes.


Assuntos
Manganês/química , Modelos Químicos , Ácido Fítico/química , Zinco/química , Quelantes/química , Substâncias Macromoleculares , Espectroscopia de Ressonância Magnética , Sementes/química , Triticum/química
3.
Inorg Chem ; 42(21): 6898-906, 2003 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-14552641

RESUMO

The compounds [Ru(NH(3))(5)(dtdp)](TFMS)(3), [Os(NH(3))(5)(dtdp)](TFMS)(3), [(NH(3))(5)Os(dtdp)Os(NH(3))(5)](TFMS)(6), [(NH(3))(5)Os(dtdp)Ru(NH(3))(5)](TFMS)(3)(PF(6))(2), and [(NH(3))(5)Os(dtdp)Fe(CN)(5)] (dtdp = 4,4'-dithiodipyridine, TFMS = trifluoromethanesulfonate) have been synthesized and characterized by elemental analysis, cyclic voltammetry, electronic, vibrational, EPR, and (1)H NMR spectroscopies. Changes in the electronic and voltammetric spectra of the ion complex [Os(NH(3))(5)(dtdp)](3+) as a function of the solution pH enable us to calculate the pK(a) for the [Os(NH(3))(5)(dtdpH)](4+) and [Os(NH(3))(5)(dtdpH)](3+) acids as 3.5 and 5.5, respectively. The comparison of the above pK(a) data with that for the free ligand (pK(1) = 4.8) provides evidence for the -S-S- bridge efficiency as an electron conductor between the two pyridine rings. The symmetric complex, [(NH(3))(5)Os(dtdp)Os(NH(3))(5)](6+), is found to exist in two geometric forms, and the most abundant form (most probably trans) has a strong conductivity through the -S-S- bridge, as is shown by EPR, which finds it to have an S = 1 spin state with a spin-spin interaction parameter of 150-200 G both in the solid sate and in frozen solution. Further the NMR of the same complex shows a large displacement of unpaired spin into the pi orbitals of the dttp ligand relative to that found in [Os(NH(3))(5)(dtdp)](3+). The comproportionation constant, K(c) = 2.0 x 10(5), for the equilibrium equation [Os(II)Os(II)] + [Os(III)Os(III)] right harpoon over left harpoon 2[Os(II)Os(III)] and the near-infrared band energy for the mixed-valence species (MMCT), [(NH(3))(5)Os(dtdp)Os(NH(3))(5)](5+) (lambda(MMCT) = 1665 nm, epsilon = 3.5 x 10(3) M(-)(1) cm(-)(1), deltanu(1/2) = 3.7 x 10(3) cm(-)(1), alpha = 0.13, and H(AB) = 7.8 x 10(2) cm(-)(1)), are quite indicative of strong electron delocalization between the two osmium centers. The electrochemical and spectroscopic data for the unsymmetrical binuclear complexes [(NH(3))(5)Os(III)(dtdp)Ru(II)(NH(3))(5)](5+) (lambda(MMCT) = 965 nm, epsilon = 2.2 x 10(2) M(-)(1) cm(-)(1), deltanu(1/2) = 3.0 x 10(3) cm(-)(1), and H(AB) = 2.2 x 10(2) cm(-)(1)) and [(NH(3))(5)Os(III)(dtdp)Fe(II)(CN)(5)] (lambda(MMCT) = 790 nm, epsilon = 7.5 x 10 M(-)(1) cm(-)(1), deltanu(1/2) = 5.4 x 10(3) cm(-)(1), and H(AB) = 2.0 x 10(2) cm(-)(1)) also suggest a considerable electron delocalization through the S-S bridge. As indicated by a comparison of K(c) and energy of the MMCT process in the iron, ruthenium, and osmium complexes, the electron delocalization between the two metal centers increases in the following order: Fe < Ru < Os.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA