Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38069333

RESUMO

This work aims to clarify the effect of dietary polyunsaturated fatty acid (PUFA) intake on the adult brain affected by amyloid pathology. McGill-R-Thy1-APP transgenic (Tg) rat and 5xFAD Tg mouse models that represent earlier or later disease stages were employed. The animals were exposed to a control diet (CD) or an HFD based on corn oil, from young (rats) or adult (mice) ages for 24 or 10 weeks, respectively. In rats and mice, the HFD impaired reference memory in wild-type (WT) animals but did not worsen it in Tg, did not cause obesity, and did not increase triglycerides or glucose levels. Conversely, the HFD promoted stronger microglial activation in Tg vs. WT rats but had no effect on cerebral amyloid deposition. IFN-γ, IL-1ß, and IL-6 plasma levels were increased in Tg rats, regardless of diet, while CXCL1 chemokine levels were increased in HFD-fed mice, regardless of genotype. Hippocampal 3-nitrotyrosine levels tended to increase in HFD-fed Tg rats but not in mice. Overall, an HFD with an elevated omega-6-to-omega-3 ratio as compared to the CD (25:1 vs. 8.4:1) did not aggravate the outcome of AD regardless of the stage of amyloid pathology, suggesting that many neurobiological processes relevant to AD are not directly dependent on PUFA intake.


Assuntos
Doença de Alzheimer , Ácidos Graxos Ômega-3 , Camundongos , Ratos , Animais , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Encéfalo/patologia , Camundongos Transgênicos , Amiloide , Modelos Animais de Doenças , Ratos Transgênicos , Dieta Hiperlipídica
2.
Eur Heart J ; 44(44): 4696-4712, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37944136

RESUMO

BACKGROUND AND AIMS: Developing novel therapies to battle the global public health burden of heart failure remains challenging. This study investigates the underlying mechanisms and potential treatment for 4-hydroxynonenal (4-HNE) deleterious effects in heart failure. METHODS: Biochemical, functional, and histochemical measurements were applied to identify 4-HNE adducts in rat and human failing hearts. In vitro studies were performed to validate 4-HNE targets. RESULTS: 4-HNE, a reactive aldehyde by-product of mitochondrial dysfunction in heart failure, covalently inhibits Dicer, an RNase III endonuclease essential for microRNA (miRNA) biogenesis. 4-HNE inhibition of Dicer impairs miRNA processing. Mechanistically, 4-HNE binds to recombinant human Dicer through an intermolecular interaction that disrupts both activity and stability of Dicer in a concentration- and time-dependent manner. Dithiothreitol neutralization of 4-HNE or replacing 4-HNE-targeted residues in Dicer prevents 4-HNE inhibition of Dicer in vitro. Interestingly, end-stage human failing hearts from three different heart failure aetiologies display defective 4-HNE clearance, decreased Dicer activity, and miRNA biogenesis impairment. Notably, boosting 4-HNE clearance through pharmacological re-activation of mitochondrial aldehyde dehydrogenase 2 (ALDH2) using Alda-1 or its improved orally bioavailable derivative AD-9308 restores Dicer activity. ALDH2 is a major enzyme responsible for 4-HNE removal. Importantly, this response is accompanied by improved miRNA maturation and cardiac function/remodelling in a pre-clinical model of heart failure. CONCLUSIONS: 4-HNE inhibition of Dicer directly impairs miRNA biogenesis in heart failure. Strikingly, decreasing cardiac 4-HNE levels through pharmacological ALDH2 activation is sufficient to re-establish Dicer activity and miRNA biogenesis; thereby representing potential treatment for patients with heart failure.


Assuntos
Insuficiência Cardíaca , MicroRNAs , Humanos , Ratos , Animais , MicroRNAs/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo , Aldeídos/metabolismo , Aldeídos/farmacologia , Processamento de Proteína Pós-Traducional , Aldeído-Desidrogenase Mitocondrial/genética
3.
Free Radic Biol Med ; 209(Pt 1): 116-126, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37783316

RESUMO

The photochemical nitrating agent 5-methyl-1,4-dinitro-1H-imidazole (DNI) has been recently described as an effective tool for nitrating tyrosine residues in proteins under 390 nm irradiation (Long T. et al., 2021). Herein, we describe the one-step synthesis of DNI from the precursor 4-methyl-5-nitro-1H-imidazole with good yield (66%) and high purity (>99%). Spectral analysis of DNI reveals two maximum peaks (228 and 290 nm) with maximum nitration yields and kinetics occurring at 290 nm. Electron paramagnetic resonance (EPR)- and mass spectrometry (MS)- spin trapping analysis evidenced the formation of nitrogen dioxide (•NO2) upon irradiation of DNI, implying the homolysis of the N-N bond in the DNI molecule. Irradiation of DNI at 290, 390 nm, or UVA light (315-400 nm), produced tyrosine nitration, with yields approaching ca. 30% with respect to DNI at 290 nm exposure. Indeed, using alpha-synuclein as a model protein, the main protein post-translational modification triggered by DNI was the generation of 3-nitrotyrosine as shown by MS analysis. Additionally, the formation of di-tyrosine was also observed. Finally, intracellular •NO2 production upon DNI photolysis in bovine aortic endothelial cells was evidenced by the nitration of the tyrosine analog probe p-hydroxyphenylacetic acid (PHPA) and cellular protein tyrosine nitration.


Assuntos
Células Endoteliais , Dióxido de Nitrogênio , Animais , Bovinos , Células Endoteliais/metabolismo , Tirosina/metabolismo , Nitratos/metabolismo , Imidazóis
4.
Antioxidants (Basel) ; 12(2)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36829967

RESUMO

Human peroxiredoxin 3 (HsPrx3) is a thiol-based peroxidase responsible for the reduction of most hydrogen peroxide and peroxynitrite formed in mitochondria. Mitochondrial disfunction can lead to membrane lipoperoxidation, resulting in the formation of lipid-bound fatty acid hydroperoxides (LFA-OOHs) which can be released to become free fatty acid hydroperoxides (fFA-OOHs). Herein, we report that HsPrx3 is oxidized and hyperoxidized by fFA-OOHs including those derived from arachidonic acid and eicosapentaenoic acid peroxidation at position 15 with remarkably high rate constants of oxidation (>3.5 × 107 M-1s-1) and hyperoxidation (~2 × 107 M-1s-1). The endoperoxide-hydroperoxide PGG2, an intermediate in prostanoid synthesis, oxidized HsPrx3 with a similar rate constant, but was less effective in causing hyperoxidation. Biophysical methodologies suggest that HsPrx3 can bind hydrophobic structures. Indeed, molecular dynamic simulations allowed the identification of a hydrophobic patch near the enzyme active site that can allocate the hydroperoxide group of fFA-OOHs in close proximity to the thiolate in the peroxidatic cysteine. Simulations performed using available and herein reported kinetic data indicate that HsPrx3 should be considered a main target for mitochondrial fFA-OOHs. Finally, kinetic simulation analysis support that mitochondrial fFA-OOHs formation fluxes in the range of nM/s are expected to contribute to HsPrx3 hyperoxidation, a modification that has been detected in vivo under physiological and pathological conditions.

5.
J Biol Chem ; 299(3): 102941, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36702251

RESUMO

Glutamine synthetase (GS), which catalyzes the ATP-dependent synthesis of L-glutamine from L-glutamate and ammonia, is a ubiquitous and conserved enzyme that plays a pivotal role in nitrogen metabolism across all life domains. In vertebrates, GS is highly expressed in astrocytes, where its activity sustains the glutamate-glutamine cycle at glutamatergic synapses and is thus essential for maintaining brain homeostasis. In fact, decreased GS levels or activity have been associated with neurodegenerative diseases, with these alterations attributed to oxidative post-translational modifications of the protein, in particular tyrosine nitration. In this study, we expressed and purified human GS (HsGS) and performed an in-depth analysis of its oxidative inactivation by peroxynitrite (ONOO-) in vitro. We found that ONOO- exposure led to a dose-dependent loss of HsGS activity, the oxidation of cysteine, methionine, and tyrosine residues and also the nitration of tryptophan and tyrosine residues. Peptide mapping by LC-MS/MS through combined H216O/H218O trypsin digestion identified up to 10 tyrosine nitration sites and five types of dityrosine cross-links; these modifications were further scrutinized by structural analysis. Tyrosine residues 171, 185, 269, 283, and 336 were the main nitration targets; however, tyrosine-to-phenylalanine HsGS mutants revealed that their sole nitration was not responsible for enzyme inactivation. In addition, we observed that ONOO- induced HsGS aggregation and activity loss. Thiol oxidation was a key modification to elicit aggregation, as it was also induced by hydrogen peroxide treatment. Taken together, our results indicate that multiple oxidative events at various sites are responsible for the inactivation and aggregation of human GS.


Assuntos
Glutamato-Amônia Ligase , Ácido Peroxinitroso , Processamento de Proteína Pós-Traducional , Humanos , Cromatografia Líquida , Glutamato-Amônia Ligase/genética , Glutamato-Amônia Ligase/metabolismo , Ácido Peroxinitroso/química , Ácido Peroxinitroso/farmacologia , Espectrometria de Massas em Tandem , Tirosina/metabolismo , Ativação Enzimática/efeitos dos fármacos , Oxirredução , Mutação , Agregação Patológica de Proteínas/induzido quimicamente
6.
J Anim Physiol Anim Nutr (Berl) ; 107(3): 754-768, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36028944

RESUMO

This study explored the metabolic adaptions to grazing conditions of two Holstein genetic strains (GS; North American, NAH; New Zealand, NZH) in two feeding strategies (FS; restricted, P30, vs. maximised, PMAX, grazing). Four groups (NAH-P30, NZH-P30, NAH-PMAX and NZH-PMAX; n = 10 cows each) were compared between -45 and 180 days in milk (DIM). NZH cows had lower (p = 0.02) fat and protein corrected milk (FPCM) yield and a tendency for lower (p = 0.09) body condition score concomitantly with a trend (p < 0.07) for higher average plasma insulin and lower (p = 0.01) 3-methylhistidine (3MH) at -45 DIM than NAH. Plasma glucose tended to be affected by the triple interaction GS × FS × DIM (p = 0.06) as it was similar between NAH-P30 and NZH-P30, but higher (p ≤ 0.02) for NZH-PMAX than NAH-PMAX except at 21 DIM. The physiological imbalance index was affected by the GS × FS interaction (p < 0.01) as it was lower (p < 0.01) only for NZH-PMAX versus NAH-PMAX. NZH cows had higher (p = 0.01) plasma thiobarbituric acid reactive substances at -45 DIM and tended to have higher protein carbonyls (p = 0.10) and superoxide dismutase (SOD) activity (p = 0.06) on average, and had higher (p < 0.01) α-tocopherol during mid-lactation than NAH Regarding the FS, FPCM was similar (p = 0.12) among them, but PMAX cows had higher (p < 0.01) plasma non-esterified fatty acids and 3MH, and lower insulin (p < 0.01) than P30 at 100 DIM. PMAX cows showed higher average SOD activity (p = 0.01) and plasma α-tocopherol at 100 and 180 DIM (p < 0.01). Under grazing, NZH cows can have a better energy status and lower muscle mobilisation but a higher redox reactivity. Maximising grazing can worsen energy status and muscle mobilisation while improving antioxidant response with no effect on FPCM.


Assuntos
Dieta , alfa-Tocoferol , Feminino , Bovinos , Animais , Dieta/veterinária , Nova Zelândia , alfa-Tocoferol/metabolismo , Leite/metabolismo , Lactação/fisiologia , Insulina , Oxirredução , América do Norte , Superóxido Dismutase/metabolismo , Metabolismo Energético
8.
Free Radic Biol Med ; 193(Pt 1): 474-484, 2022 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-36332879

RESUMO

Guanine (Gua), among purines, is a preferred oxidation/nitration target because of its low one-electron redox potential. The reactive oxygen/nitrogen species peroxynitrite (ONOO-), produced in vivo by the reaction between nitric oxide (•NO) and superoxide radical (O2•‒), is responsible for several oxidative modifications in biomolecules, including nitration, nitrosation, oxidation, and peroxidation. In particular, the nitration of Gua, although detected, as well as its reaction kinetics have been seldom investigated. Thus, we studied the concentration- and temperature-dependent formation of 8-nitroguanine (8-NitroGua) in phosphate buffer (pH 7.40) using stopped-flow spectrophotometry. Traces showed a biexponential behavior, with best-fit rate constants: kfast = 4.4 s-1 and kslow = 0.41 s-1 (30 °C, 400 µM both Gua and ONOO-). kfast increased linearly with the concentration of both reactants whereas kslow was concentration-independent. Linear regression analysis of kfast as a function of Gua and ONOO- concentration yielded values of 2.5-6.3 × 103 M-1s-1 and 1.5-3.5 s-1 for the second-order (slope) and first-order (ordinate) rate constants, respectively (30 °C). Since ONOO- is a short-lived species, its decay kinetics was also taken into account for this analysis. The 8-NitroGua product was stable for at least 4 h, so no spontaneous denitration was observed. Stopped-flow assays using antioxidants and free-radical scavengers suggested a mixed direct/indirect reaction mechanism for 8-NitroGua formation. Gua nitration by ONOO- was also observed in the presence of physiologically relevant CO2 concentrations. The reaction product identity, its yield (∼4.2%, with 400 µM ONOO- and 200 µM Gua), and the reaction mechanism were unequivocally determined by HPLC-MS/MS experiments. In conclusion, 8-NitroGua production at physiologic pH reached significant levels in a few hundred milliseconds, suggesting that the process might be kinetically relevant in vivo and can likely cause permanent nitrative damage to DNA bases.


Assuntos
Ácido Peroxinitroso , Espectrometria de Massas em Tandem , Nitratos/química , Guanina/química , Óxido Nítrico/química
9.
Biomedicines ; 10(3)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35327476

RESUMO

Oxylipins play a critical role in regulating the onset and resolution phase of inflammation. Despite inflammation is a pathological hallmark in amyotrophic lateral sclerosis (ALS), the plasma oxylipin profile of ALS patients has not been assessed yet. Herein, we develop an oxylipin profile-targeted analysis of plasma from 74 ALS patients and controls. We found a significant decrease in linoleic acid-derived oxylipins in ALS patients, including 9-hydroxy-octadecadienoic acid (9-HODE) and 13-HODE. These derivatives have been reported as important regulators of inflammation on different cell systems. In addition, some 5-lipoxygenase metabolites, such as 5-hydroxy- eicosatetraenoic acid also showed a significant decrease in ALS plasma samples. Isoprostanes of the F2α family were detected only in ALS patients but not in control samples, while the hydroxylated metabolite 11-HETE significantly decreased. Despite our effort to analyze specialized pro-resolving mediators, they were not detected in plasma samples. However, we found the levels of 14-hydroxy-docosahexaenoic acid, a marker pathway of the Maresin biosynthesis, were also reduced in ALS patients, suggesting a defective activation in the resolution programs of inflammation in ALS. We further analyze oxylipin concentration levels in plasma from ALS patients to detect correlations between these metabolites and some clinical parameters. Interestingly, we found that plasmatic levels of 13-HODE and 9-HODE positively correlate with disease duration, expressed as days since onset. In summary, we developed a method to analyze "(oxy)lipidomics" in ALS human plasma and found new profiles of metabolites and novel lipid derivatives with unknown biological activities as potential footprints of disease onset.

10.
PLoS One ; 16(4): e0250852, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33909702

RESUMO

Aristotelia chilensis (Mol.) Stuntz, also known as maqui, is a plant native to Chile without chemical characterization and quantification of the bioactive compounds present in it. HPLC-UV and HPLC-MS/MS studies have shown the presence, at different concentrations, of phenolic and anthocyanin compounds in fruit and leave extracts of the domesticated maqui clones Luna Nueva, Morena, and Perla Negra. The extracts from leaves and unripe fruits of Luna Nueva and Morena clones significantly inhibit platelet aggregation induced by several agonists; the extracts inhibit platelet granule secretion by decreasing the exposure of P-selectin and CD63 at the platelet membrane. Reactive oxygen species formation in platelets is lower in the presence of maqui extracts. Statistical Pearson analysis supports the levels of phenolic and anthocyanin compounds being responsible for the antiaggregant maqui effects. This work is the first evidence of antiplatelet activity from Aristotelia chilensis giving added value to the use of leaves and unripe fruits from this species.


Assuntos
Antocianinas/farmacologia , Elaeocarpaceae/química , Inibidores da Agregação Plaquetária/farmacologia , Polifenóis/farmacologia , Antocianinas/química , Antocianinas/isolamento & purificação , Chile , Cromatografia Líquida de Alta Pressão , Domesticação , Frutas/química , Humanos , Selectina-P/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Inibidores da Agregação Plaquetária/química , Inibidores da Agregação Plaquetária/isolamento & purificação , Polifenóis/química , Polifenóis/isolamento & purificação , Espectrometria de Massas em Tandem , Tetraspanina 30/metabolismo
11.
J Nutr Biochem ; 94: 108646, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33838229

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is characterized by excessive liver fat deposition in the absence of significant alcohol intake. Since extra virgin olive oil (EVOO) reduces fat accumulation, we analyzed the involvement of nitro-fatty acids (NO2-FA) on the beneficial effects of EVOO consumption on NAFLD. Nitro-fatty acids formation was observed during digestion in mice supplemented with EVOO and nitrite. Mice fed with a high-fat diet (HF) presented lower plasma NO2-FA levels than normal chow, and circulating concentrations recovered when the HF diet was supplemented with 10% EVOO plus nitrite. Under NO2-FA formation conditions, liver hemoxygenase-1 expression significantly increased while decreased body weight and fat liver accumulation. Mitochondrial dysfunction plays a central role in the pathogenesis of NAFLD while NO2-FA has been shown to protect from mitochondrial oxidative damage. Accordingly, an improvement of respiratory indexes was observed when mice were supplemented with both EVOO plus nitrite. Liver mitochondrial complexes II and V activities were greater in mice with EVOO supplementation and further improved in the presence of nitrite. Overall, our results strongly suggest a positive correlation between NO2-OA formation from EVOO and the observed improvement of mitochondrial function in NAFLD. The formation of NO2-FA can account for the health benefits associated with EVOO consumption.


Assuntos
Ácidos Graxos/química , Ácidos Graxos/farmacologia , Mitocôndrias/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Animais , Composição Corporal , Peso Corporal , Suplementos Nutricionais , Feminino , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Azeite de Oliva , Tamanho do Órgão
12.
J Biol Chem ; 295(46): 15466-15481, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-32873707

RESUMO

Persulfides (RSSH/RSS-) participate in sulfur trafficking and metabolic processes, and are proposed to mediate the signaling effects of hydrogen sulfide (H2S). Despite their growing relevance, their chemical properties are poorly understood. Herein, we studied experimentally and computationally the formation, acidity, and nucleophilicity of glutathione persulfide (GSSH/GSS-), the derivative of the abundant cellular thiol glutathione (GSH). We characterized the kinetics and equilibrium of GSSH formation from glutathione disulfide and H2S. A pKa of 5.45 for GSSH was determined, which is 3.49 units below that of GSH. The reactions of GSSH with the physiologically relevant electrophiles peroxynitrite and hydrogen peroxide, and with the probe monobromobimane, were studied and compared with those of thiols. These reactions occurred through SN2 mechanisms. At neutral pH, GSSH reacted faster than GSH because of increased availability of the anion and, depending on the electrophile, increased reactivity. In addition, GSS- presented higher nucleophilicity with respect to a thiolate with similar basicity. This can be interpreted in terms of the so-called α effect, i.e. the increased reactivity of a nucleophile when the atom adjacent to the nucleophilic atom has high electron density. The magnitude of the α effect correlated with the Brønsted nucleophilic factor, ßnuc, for the reactions with thiolates and with the ability of the leaving group. Our study constitutes the first determination of the pKa of a biological persulfide and the first examination of the α effect in sulfur nucleophiles, and sheds light on the chemical basis of the biological properties of persulfides.


Assuntos
Dissulfetos/química , Glutationa/análogos & derivados , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Dissulfetos/análise , Dissulfetos/metabolismo , Glutationa/análise , Glutationa/química , Glutationa/metabolismo , Peróxido de Hidrogênio/química , Sulfeto de Hidrogênio/química , Sulfeto de Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Ácido Peroxinitroso/química , Teoria Quântica , Espectrometria de Massas em Tandem , Termodinâmica
13.
Data Brief ; 28: 105037, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31909129

RESUMO

Under physiological and pathophysiological conditions, lipid nitration occurs generating nitro-fatty acids (NFA) with pleiotropic activities as modulation of inflammatory cell responses. Foam cell formation and atherosclerotic lesion development have been extensively related to low-density lipoprotein (LDL) oxidation. Considering our manuscript "Fatty acid nitration in human low-density lipoprotein" (https://doi.org/10.1016/j.abb.2019.108190), herein we report the oxidation versus nitration of human LDL protein and lipid fractions. Data is shown on LDL fatty acid nitration, in particular, formation and quantitation of nitro-conjugated linoleic acid (NO2-cLA) under mild nitration conditions. In parallel to NO2-cLA formation, depletion of endogenous antioxidants, protein tyrosine nitration, and carbonyl formation is observed. Overall, our data propose the formation of a potential anti-atherogenic form of LDL carrying NFA.

14.
Arch Biochem Biophys ; 679: 108190, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31738891

RESUMO

Lipid nitration occurs during physiological and pathophysiological conditions, generating a variety of biomolecules capable to modulate inflammatory cell responses. Low-density lipoprotein (LDL) oxidation has been extensively related to atherosclerotic lesion development while oxidative modifications confer the particle pro-atherogenic features. Herein, we reviewed the oxidation versus nitration of human LDL protein and lipid fractions. We propose that unsaturated fatty acids present in LDL can be nitrated under mild nitration conditions, suggesting an anti-atherogenic role for LDL carrying nitro-fatty acids (NFA).


Assuntos
Ácidos Graxos/metabolismo , Lipoproteínas LDL/metabolismo , Humanos , Óxido Nítrico/metabolismo , Oxirredução
15.
J Biol Chem ; 294(37): 13593-13605, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31311857

RESUMO

Hydrogen sulfide (H2S) participates in prokaryotic metabolism and is associated with several physiological functions in mammals. H2S reacts with oxidized thiol derivatives (i.e. disulfides and sulfenic acids) and thereby forms persulfides, which are plausible transducers of the H2S-mediated signaling effects. The one-cysteine peroxiredoxin alkyl hydroperoxide reductase E from Mycobacterium tuberculosis (MtAhpE-SH) reacts fast with hydroperoxides, forming a stable sulfenic acid (MtAhpE-SOH), which we chose here as a model to study the interactions between H2S and peroxiredoxins (Prx). MtAhpE-SOH reacted with H2S, forming a persulfide (MtAhpE-SSH) detectable by mass spectrometry. The rate constant for this reaction was (1.4 ± 0.2) × 103 m-1 s-1 (pH 7.4, 25 °C), six times higher than that reported for the reaction with the main low-molecular-weight thiol in M. tuberculosis, mycothiol. H2S was able to complete the catalytic cycle of MtAhpE and, according to kinetic considerations, it could represent an alternative substrate in M. tuberculosis. MtAhpE-SSH reacted 43 times faster than did MtAhpE-SH with the unspecific electrophile 4,4'-dithiodipyridine, a disulfide that exhibits no preferential reactivity with peroxidatic cysteines, but MtAhpE-SSH was less reactive toward specific Prx substrates such as hydrogen peroxide and peroxynitrite. According to molecular dynamics simulations, this loss of specific reactivity could be explained by alterations in the MtAhpE active site. MtAhpE-SSH could transfer its sulfane sulfur to a low-molecular-weight thiol, a process likely facilitated by the low pKa of the leaving thiol MtAhpE-SH, highlighting the possibility that Prx participates in transpersulfidation. The findings of our study contribute to the understanding of persulfide formation and reactivity.


Assuntos
Cisteína/análogos & derivados , Dissulfetos/metabolismo , Mycobacterium tuberculosis/metabolismo , Peroxirredoxinas/metabolismo , Catálise , Domínio Catalítico , Cisteína/química , Cisteína/metabolismo , Dissulfetos/química , Peróxido de Hidrogênio/química , Sulfeto de Hidrogênio/metabolismo , Cinética , Oxirredução , Especificidade por Substrato , Ácidos Sulfênicos/metabolismo , Compostos de Sulfidrila/química , Sulfetos
16.
PLoS One ; 14(3): e0213780, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30870481

RESUMO

Early lactation is an energy-deming period for dairy cows which may lead to negative energy balance, threatening animal health and consequently productivity. Herein we studied hepatic mitochondrial function in Holstein-Friesian multiparous dairy cows during lactation, under two different feeding strategies. During the first 180 days postpartum the cows were fed a total mixed ration (70% forage: 30% concentrate) ad libitum (non-grazing group, G0) or grazed Festuca arundinacea or Mendicago sativa plus supplementation (grazing group, G1). From 180 to 250 days postpartum, all cows grazed Festuca arundinacea were supplemented with total mixed ration. Mitochondrial function was assessed measuring oxygen consumption rate in liver biopsies revealed that maximum respiratory rate decreased significantly in grazing cows during early lactation, yet was unchanged in non-grazing cows during the lactation curve. While no differences could be found in mitochondrial content or oxidative stress markers, a significant increase in protein lysine acetylation was found in grazing cows during early lactation but not in cows from the non-grazing group. Mitochondrial acetylation positively correlated with liver triglycerides ß-hydroxybutyrate plasma levels, well-known markers of negative energy balance, while a negative correlation was found with the maximum respiratory rate sirtuin 3 levels. To our knowledge this is the first report of mitochondrial function in liver biopsies of dairy cows during lactation. On the whole our results indicate that mitochondrial function is impaired during early lactation in grazing cows that acetylation may account for changes in mitochondrial function in this period. Additionally, our results suggest that feeding total mixed ration during early lactation may be an efficient protective strategy.


Assuntos
Comportamento Alimentar , Lactação , Lisina/química , Mitocôndrias Hepáticas/patologia , Estresse Oxidativo , Proteínas/química , Acetilação , Animais , Bovinos , Metabolismo Energético , Feminino , Mitocôndrias Hepáticas/metabolismo
18.
Free Radic Biol Med ; 130: 369-378, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30391677

RESUMO

Mitochondria are main sites of peroxynitrite formation. While at low concentrations mitochondrial peroxynitrite has been associated with redox signaling actions, increased levels can disrupt mitochondrial homeostasis and lead to pathology. Peroxiredoxin 3 is exclusively located in mitochondria, where it has been previously shown to play a major role in hydrogen peroxide reduction. In turn, reduction of peroxynitrite by peroxiredoxin 3 has been inferred from its protective actions against tyrosine nitration and neurotoxicity in animal models, but was not experimentally addressed so far. Herein, we demonstrate the human peroxiredoxin 3 reduces peroxynitrite with a rate constant of 1 × 107 M-1 s-1 at pH 7.8 and 25 °C. Reaction with hydroperoxides caused biphasic changes in the intrinsic fluorescence of peroxiredoxin 3: the first phase corresponded to the peroxidatic cysteine oxidation to sulfenic acid. Peroxynitrite in excess led to peroxiredoxin 3 hyperoxidation and tyrosine nitration, oxidative post-translational modifications that had been previously identified in vivo. A significant fraction of the oxidant is expected to react with CO2 and generate secondary radicals, which participate in further oxidation and nitration reactions, particularly under metabolic conditions of active oxidative decarboxylations or increased hydroperoxide formation. Our results indicate that both peroxiredoxin 3 and 5 should be regarded as main targets for peroxynitrite in mitochondria.


Assuntos
Mitocôndrias/metabolismo , Oxidantes/metabolismo , Peroxirredoxina III/genética , Peroxirredoxinas/genética , Dióxido de Carbono/metabolismo , Cisteína/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Cinética , Oxirredução , Peroxirredoxina III/metabolismo , Ácido Peroxinitroso/metabolismo , Processamento de Proteína Pós-Traducional/genética , Transdução de Sinais/genética
19.
Oxid Med Cell Longev ; 2018: 5386079, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30046378

RESUMO

Syzygium cumini (L.) Skeels has been reported to exert anti-inflammatory and cardiometabolic activities due to its high content of polyphenols. We characterized the chemical composition and assessed the antidiabetic effects of a novel polyphenol-rich extract (PESc) obtained from S. cumini leaf. Rats were injected with alloxan (150 mg/kg, ip, ALX group) and followed up for 7 days. Some were orally treated with PESc (50 mg/kg/day) for 7 days before and after diabetes induction (ALX-PP) or only for 7 days after alloxan injection (ALX-P). ALX-P and ALX-PP decreased fasting glycemia in 37 and 43%, respectively, as compared to ALX. Triglycerides and total cholesterol serum levels were also significantly reduced in comparison to ALX. PESc presented high polyphenol concentration (71.78 ± 8.57 GAE/100 g), with flavonoid content of 8.21 ± 0.42 QE/100 g. Upon HPLC-MS/MS and MS/MS studies, five main polyphenols-gallic acid, quercetin, myricetin, and its derivatives-were identified. Myricetin was predominant (192.70 ± 16.50 µg/mg PESc), followed by measurable amounts of gallic acid (11.15 ± 0.90 µg/mg PESc) and quercetin (4.72 ± 0.06 µg/mg PESc). Kinetic assessment of total antioxidant capacity revealed PESc high potency, since maximum response was reached within 5 min reaction time in a concentration-dependent manner. Specific antioxidant activity of PESc was assessed against both DPPH• and ABTS•+, showing strong activity (IC50: 3.88 ± 1.09 and 5.98 ± 1.19 µg/mL, resp.). PESc also inhibited lipoxygenase activity (IC50: 27.63 ± 8.47), confirming its antioxidant activity also on biologically relevant radicals. Finally, PESc induced insulin secretion by directly stimulating INS-1E ß cells in the absence of any cytotoxic effect. Overall, our results support that PESc is a potent antioxidant phytocomplex with potential pharmacological use as a preventive antidiabetic natural product.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Folhas de Planta/química , Polifenóis/química , Syzygium/química , Animais , Antioxidantes/metabolismo , Glicemia/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Diabetes Mellitus Experimental/metabolismo , Insulina/metabolismo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Espectrometria de Massas em Tandem , Triglicerídeos/sangue
20.
Front Mol Neurosci ; 11: 131, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29760648

RESUMO

The lack of current treatments for amyotrophic lateral sclerosis (ALS) highlights the need of a comprehensive understanding of the biological mechanisms of the disease. A consistent neuropathological feature of ALS is the extensive inflammation around motor neurons and axonal degeneration, evidenced by accumulation of reactive astrocytes and activated microglia. Final products of inflammatory processes may be detected as a screening tool to identify treatment response. Herein, we focus on (a) detection of arachidonic acid (AA) metabolization products by lipoxygenase (LOX) and prostaglandin endoperoxide H synthase in SOD1G93A mice and (b) evaluate its response to the electrophilic nitro-oleic acid (NO2-OA). Regarding LOX-derived products, a significant increase in 12-hydroxyeicosatetraenoic acid (12-HETE) levels was detected in SOD1G93A mice both in plasma and brain whereas no changes were observed in age-matched non-Tg mice at the onset of motor symptoms (90 days-old). In addition, 15-hydroxyeicosatetraenoic acid (15-HETE) levels were greater in SOD1G93A brains compared to non-Tg. Prostaglandin levels were also increased at day 90 in plasma from SOD1G93A compared to non-Tg being similar in both types of animals at later stages of the disease. Administration of NO2-OA 16 mg/kg, subcutaneously (s/c) three times a week to SOD1G93A female mice, lowered the observed increase in brain 12-HETE levels compared to the non-nitrated fatty acid condition, and modified many others inflammatory markers. In addition, NO2-OA significantly improved grip strength and rotarod performance compared to vehicle or OA treated animals. These beneficial effects were associated with increased hemeoxygenase 1 (HO-1) expression in the spinal cord of treated mice co-localized with reactive astrocytes. Furthermore, significant levels of NO2-OA were detected in brain and spinal cord from NO2-OA -treated mice indicating that nitro-fatty acids (NFA) cross brain-blood barrier and reach the central nervous system to induce neuroprotective actions. In summary, we demonstrate that LOX-derived oxidation products correlate with disease progression. Overall, we are proposing that key inflammatory mediators of AA-derived pathways may be useful as novel footprints of ALS onset and progression as well as NO2-OA as a promising therapeutic compound.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA