Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Syst Appl Microbiol ; 45(1): 126288, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34933230

RESUMO

The Anones Lagoon, located in the Island Municipality of Vieques, Puerto Rico (PR), received extensive bombing by the US Navy during military exercises for decades until 2003 when military activities ceased. Here, we employed shotgun metagenomic sequencing to investigate how microbial communities responded to pollution by heavy metals and explosives at this lagoon. Sediment samples (0-5 cm) from Anones were collected in 2005 and 2014 and compared to samples from two reference lagoons, i.e., Guaniquilla, Cabo Rojo (a natural reserve) and Condado, San Juan (PR's capital city). Consistent with low anthropogenic inputs, Guaniquilla exhibited the highest degree of diversity with a lower frequency of genes related to xenobiotics metabolism between the three lagoons. Notably, a clear shift was observed in Anones, with Euryarchaeota becoming enriched (9% of total) and a concomitant increase in community diversity, by about one order of magnitude, after almost 10 years without bombing activities. In contrast, genes associated with explosives biodegradation and heavy metal transformation significantly decreased in abundance in Anones 2014 (by 91.5%). Five unique metagenome-assembled genomes (MAGs) were recovered from the Anones 2005 sample that encoded genetic determinants implicated in biodegradation of contaminants, and we propose to name one of them as "Candidatus Biekeibacterium resiliens" gen. nov., sp. nov. within the Gammaproteobacteria class. Collectively, these results provide new insights into the natural attenuation of explosive contaminants by the benthic microbial communities of the Anones lagoon and provide a reference point for assessing other similarly impacted sites and associated bioremediation efforts.


Assuntos
Metais Pesados , Militares , Humanos , Filogenia , Porto Rico , RNA Ribossômico 16S/genética
2.
Science ; 362(6410): 7, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30287637
3.
Toxicol Rep ; 5: 6-11, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29234604

RESUMO

Trace element composition in plant biomass could be used as an indicator of environmental stress, management practices and restoration success. A longitudinal study was conducted to compare Pb, Cd, and Cu content in seagrass Syringodium filiforme collected at a former bombing range in Puerto Rico with those of a Biosphere Reserve under similar geoclimatic conditions. Trace elements were measured by atomic absorption after dry-ashing of samples and extraction with acid. In general, levels of Pb, Cd, and Cu varied during 2001, 2003, 2005-2006, and 2013-2016. Results showed that bioaccumulated concentration of these trace elements were consistently higher, but not significant, at the bombing range site. As expected in polluted areas, greater variability in Pb and Cd content were observed in the military impacted site with levels up to 14 and 17 times higher than seagrass from the reference site, respectively. Although a decrease in Pb was observed after cessation of all military activities in 2003, the concentration in plant biomass was still above levels of ecological concern, indicating that natural attenuation is insufficient for cleanup of the site.

4.
Int J Environ Res Public Health ; 3(3): 292-300, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16968977

RESUMO

Hydrocarbon contamination of groundwater resources has become a major environmental and human health concern in many parts of the world. Our objectives were to employ both culture and culture-independent techniques to characterize the dynamics of microbial community structure within a fluidized bed reactor used to bioremediate a diesel-contaminated groundwater in a tropical environment. Under normal operating conditions, 97 to 99% of total hydrocarbons were removed with only 14 min hydraulic retention time. Over 25 different cultures were isolated from the treatment unit (96% which utilized diesel constituents as sole carbon source). Approximately 20% of the isolates were also capable of complete denitrification to nitrogen gas. Sequence analysis of 16S rDNA demonstrated ample diversity with most belonging to the infinity, beta and gamma subdivision of the Proteobacteria, Bacilli, and Actinobacteria groups. Moreover, the genetic constitution of the microbial community was examined at multiple time points with a Functional Gene Array (FGA) containing over 12,000 probes for genes involved in organic degradation and major biogeochemical cycles. Total community DNA was extracted and amplified using an isothermal phi29 polymerase-based technique, labeled with Cy5 dye, and hybridized to the arrays in 50% formimide overnight at 50 degrees C. Cluster analysis revealed comparable profiles over the course of treatment suggesting the early selection of a very stable microbial community. A total of 270 genes for organic contaminant degradation (including naphthalene, toluene [aerobic and anaerobic], octane, biphenyl, pyrene, xylene, phenanthrene, and benzene); and 333 genes involved in metabolic activities (nitrite and nitrous oxide reductases [nirS, nirK, and nosZ], dissimilatory sulfite reductases [dsrAB], potential metal reducing C-type cytochromes, and methane monooxygenase [pmoA]) were repeatedly detected. Genes for degradation of MTBE, nitroaromatics and chlorinated compounds were also present, indicating a broad catabolic potential of the treatment unit. FGA's demonstrated the early establishment of a diverse community with concurrent aerobic and anaerobic processes contributing to the bioremediation process.


Assuntos
Bactérias/metabolismo , Recuperação e Remediação Ambiental , Hidrocarbonetos/metabolismo , Microbiologia da Água , Poluentes Químicos da Água/metabolismo , Bactérias/classificação , Sequência de Bases , Biofilmes , Primers do DNA
5.
Int J Environ Res Public Health ; 2(2): 263-6, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16705826

RESUMO

Plants are good environmental sensors of the soil conditions in which they are growing. They also respond directly to the state of air. The tops of plants are collectors of air pollutants, and their chemical composition may be a good indicator for contaminated-areas when it is assessed against background values obtained for unpolluted vegetation. Both, aquatic and terrestrial plants are known to bioaccumulate heavy metals and therefore represent a potential source of these contaminants to the human food chain. An evaluation of heavy metals was conducted from vegetation samples collected at the Atlantic Fleet Weapons Training Facilities (AFWTF) in Vieques, Puerto Rico. In order to understand the potential risks associated to heavy metal mobilization through biological systems, it is first necessary to establish background values obtained from reference locations. This information allows a better interpretation of the significance of anthropogenic factors in changing trace elements status in soil and plants. Since Guánica State Forest is located at a similar geoclimatic zone as the AFWTF, samples at this site were used as a standard reference material and as experimental controls. Both sampling and analysis were conducted as previously described in standardized protocols using acid digestion of dry ashes. Then, levels of heavy metals were obtained by air-acetylene flame detection in an atomic absorption spectrophotometer. Our results from the samples taken at the AFWTF indicate mobilization of undesirable trace elements through the marine and terrestrial food web. Since plants naturally remove heavy metals from soils, they could be employed for the restoration of this and similarly contaminated sites.


Assuntos
Magnoliopsida/química , Metais Pesados/análise , Poluentes do Solo/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Porto Rico , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA