Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Neurochir Suppl ; 122: 97-100, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27165885

RESUMO

In this chapter we present in vivo experiments with a new minimally invasive method of monitoring intracranial pressure (ICP). Strain gauge deformation sensors are externally glued onto the exposed skull. The signal from these sensors is amplified, filtered, and sent to a computer with appropriate software for analysis and data storage. Saline infusions into the spinal channel of rats were performed to produce ICP changes, and minimally invasive ICP and direct Codman intraparenchymal ICP were simultaneously acquired in six animals. The similarity between the invasive and minimally invasive methods in response to ICP increase was assessed using Pearson's correlation coefficient. It demonstrated good agreement between the two measures < r > = 0.8 ± 0.2, with a range of 0.31-0.99.


Assuntos
Hipertensão Intracraniana/fisiopatologia , Pressão Intracraniana/fisiologia , Crânio/fisiopatologia , Animais , Desenho de Equipamento , Hipertensão Intracraniana/diagnóstico , Masculino , Monitorização Fisiológica , Ratos , Ratos Wistar , Crânio/fisiologia
2.
Acta Neurochir Suppl ; 122: 121-4, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27165890

RESUMO

Intracranial pressure (ICP) monitoring is sometimes required in clinical pictures of stroke, as extensive intraparenchymal hematomas and intracranial bleeding may severely increase ICP, which can lead to irreversible conditions, such as dementia and cognitive derangement. ICP monitoring has been accepted as a procedure for the safe diagnosis of increased ICP, and for the treatment of intracranial hypertension in some diseases. In this work, we evaluated ICP behavior during the induction of an experimental model of autologous blood injection in rats, simulating a hemorrhagic stroke. Rats were subjected to stereotactic surgery for the implantation of a unilateral cannula into the left striatal region of the brain. Autologous blood was infused into the left striatal region with an automatic microinfusion pump. ICP monitoring was performed throughout the procedure of hemorrhagic stroke induction. Analyses consisted of short-time Fourier transform for ICP before and after stroke induction and the histological processing of the animals' brains. Short-time Fourier transform analysis demonstrated oscillations in the ICP frequency components throughout time after the microinjections compared with data before them. Histological analysis revealed neuropathological changes in the striatum in all microinjected animals.


Assuntos
Hemorragia Cerebral/fisiopatologia , Pressão Intracraniana/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Animais , Hemorragia Cerebral/complicações , Hemorragia Cerebral/patologia , Corpo Estriado/patologia , Modelos Animais de Doenças , Análise de Fourier , Homeostase , Masculino , Monitorização Fisiológica , Ratos , Ratos Wistar , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA