Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Food Sci ; 89(6): 3290-3305, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38767864

RESUMO

A better understanding of how emulsifier type could differently influence the behavior of nanostructured lipid carriers (NLC) under the gastrointestinal digestion process, as well as at the cellular level, is of utmost importance for the NLC-based formulations' optimization and risk assessment in the food field. In this study, NLC composed by fully hydrogenated soybean and high-oleic sunflower oils were prepared using soy lecithin (NLC Lß) or Tween 80 (NLC Tß) as an emulsifier. ß-Carotene was entrapped within NLC developed as a promising strategy to overcome ß-carotene's low bioavailability and stability. The effect of emulsifier type on the digestibility of ß-carotene-loaded NLC was evaluated using an in vitro dynamic digestion model mimicking peristalsis motion. The influence of ß-carotene-loaded NLC on cell viability was assessed using Caco-2 cells in vitro. NLC Tß remained stable in the gastric compartment, presenting particle size (PS) similar to the initial NLC (PS: 245.68 and 218.18 nm, respectively), while NLC Lß showed lower stability (PS > 1000 nm) in stomach and duodenum phases. NLC Tß also provided high ß-carotene protection and delivery capacity (i.e., ß-carotene bioaccessibility increased 10-fold). Based on the results of digestion studies, NLC Tß has shown better physical stability during the passage through the in vitro dynamic gastrointestinal system than NLC Lß. Moreover, the developed NLC did not compromise cell viability up to 25 µg/mL of ß-carotene. Thus, the NLC developed proved to be a biocompatible structure and able to incorporate and protect ß-carotene for further food applications. PRACTICAL APPLICATION: The findings of this study hold significant implications for industrial applications in terms of developing nanostructured lipid carriers from natural raw materials widely available and used to produce other lipid-based products in the food industry, as an alternative to synthetic ones. In this respect, the ß-carotene-loaded NLC developed in this study would find a great industrial application in the food industry, which is in constant search to develop functional foods capable of increasing the bioavailability of bioactive compounds.


Assuntos
Digestão , Emulsificantes , Nanoestruturas , beta Caroteno , beta Caroteno/química , beta Caroteno/farmacocinética , Células CACO-2 , Humanos , Emulsificantes/química , Nanoestruturas/química , Disponibilidade Biológica , Portadores de Fármacos/química , Tamanho da Partícula , Lipídeos/química , Polissorbatos/química , Lecitinas/química , Sobrevivência Celular/efeitos dos fármacos , Óleo de Girassol/química
2.
Int J Pharm ; 604: 120534, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33781887

RESUMO

Curcumin (CUR) is a phenolic compound present in some herbs, including Curcuma longa Linn. (turmeric rhizome), with a high bioactive capacity and characteristic yellow color. It is mainly used as a spice, although it has been found that CUR has interesting pharmaceutical properties, acting as a natural antioxidant, anti-inflammatory, antimicrobial, and antitumoral agent. Nonetheless, CUR is a hydrophobic compound with low water solubility, poor chemical stability, and fast metabolism, limiting its use as a pharmacological compound. Smart drug delivery systems (DDS) have been used to overcome its low bioavailability and improve its stability. The current work overviews the literature from the past 10 years on the encapsulation of CUR in nanostructured systems, such as micelles, liposomes, niosomes, nanoemulsions, hydrogels, and nanocomplexes, emphasizing its use and ability in cancer therapy. The studies highlighted in this review have shown that these nanoformulations achieved higher solubility, improved tumor cytotoxicity, prolonged CUR release, and reduced side effects, among other interesting advantages.


Assuntos
Curcumina , Nanoestruturas , Neoplasias , Disponibilidade Biológica , Humanos , Micelas , Neoplasias/tratamento farmacológico
3.
J Agric Food Chem ; 59(10): 5589-94, 2011 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-21491929

RESUMO

In this work, in vitro antioxidant activity of two Brazilian red seaweeds, Gracilaria birdiae and Gracilaria cornea, was characterized. The total phenolic content, the radical-scavenging activity and the antioxidant activity were determined in two solvent extracts of the algae. Liquid chromatography-mass spectrometry (LC-MS/MS) allowed identification of important antioxidant compounds. The ethanol extract of G. birdiae was found to have the highest value of total phenolic content: 1.13 mg of gallic acid equiv (GAE)/g of extract. The radical-scavenging activity of G. birdiae and G. cornea extracts has been evaluated at different extract concentrations; the IC(50) values of ethanolic extracts of G. cornea and G. birdiae were 0.77 and 0.76 mg mL(-1), respectively, while for methanolic extracts, the IC(50) values of G. cornea and G. birdiae were 0.86 and 0.76 mg mL(-1), respectively. The antioxidant activities of these two seaweeds' extracts as assessed by the ß-carotene-linoleic acid assay were equally high, achieving values of ß-carotene oxidation inhibition of up to 40%. Finally, in the methanolic extracts, LC-MS/MS allowed identification in both algae of two important antioxidants: apigenin and gallic acid.


Assuntos
Antioxidantes/análise , Gracilaria/química , Antioxidantes/farmacologia , Apigenina/análise , Brasil , Sequestradores de Radicais Livres/análise , Sequestradores de Radicais Livres/farmacologia , Ácido Gálico/análise , Oxirredução , Fenóis/análise , Extratos Vegetais/química , Extratos Vegetais/farmacologia , beta Caroteno/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA