Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(5)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36904408

RESUMO

In this work, a conducting polymer (CP) was obtained through three electrochemical procedures to study its effect on the development of an electrochemical immunosensor for the detection of immunoglobulin G (IgG-Ag) by square wave voltammetry (SWV). The glassy carbon electrode modified with poly indol-6-carboxylic acid (6-PICA) applied the cyclic voltammetry technique presented a more homogeneous size distribution of nanowires with greater adherence allowing the direct immobilization of the antibodies (IgG-Ab) to detect the biomarker IgG-Ag. Additionally, 6-PICA presents the most stable and reproducible electrochemical response used as an analytical signal for developing a label-free electrochemical immunosensor. The different steps in obtaining the electrochemical immunosensor were characterized by FESEM, FTIR, cyclic voltammetry, electrochemical impedance spectroscopy, and SWV. Optimal conditions to improve performance, stability, and reproducibility in the immunosensing platform were achieved. The prepared immunosensor has a linear detection range of 2.0-16.0 ng·mL-1 with a low detection limit of 0.8 ng·mL-1. The immunosensing platform performance depends on the orientation of the IgG-Ab, favoring the formation of the immuno-complex with an affinity constant (Ka) of 4.32 × 109 M-1, which has great potential to be used as point of care testing (POCT) device for the rapid detection of biomarkers.

2.
ACS Appl Bio Mater ; 3(8): 4941-4948, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35021738

RESUMO

The first electrochemical immunosensor for the determination of the 20S proteasome (P20S) was developed, entailing the immobilization of an antibody on an aminophenylboronic/poly-indole-6-carboxylic acid-modified electrode. The proposed electrochemical bioplatform is a simple and feasible analytical tool applicable for the determination of P20S in human plasma, considering its high clinical and biological relevance. Cyclic voltammetry, electrochemical impedance spectroscopy, and square wave voltammetry (SWV) were used to determine the optimal step-by-step process to obtain the electrochemical immunosensor. The interaction of P20S with the recognition layer of the immobilized antibody on the nanostructured surface took place by incubating the electrode in a P20S solution at 20 °C for 2 h. Using SWV as an electro-analytical technique, this immunosensor can quantify P20S. The current was linear with the P20S concentration within two dynamic concentration ranges from 20.0 to 80.0 and 80.0 to 200.0 ng·mL-1 (r2 = 0.992 and 0.98, respectively) with a limit of detection and quantification of 6 and 18 ng·mL-1, respectively. Moreover, the immunosensor showed considerable repeatability and reproducibility, when the determination was done in human serum, which confirms that it is a promising alternative for direct detection of P20S in biological fluids with minimal interference.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA