RESUMO
Liposomes coated with chitosan by ionic gelation with tripolyphosphate (TPP-chitosomes) are interesting particles for stabilizing active compounds. However, the encapsulation condition must be optimized. The aim of this study was to optimize the encapsulation of phenolics and carotenoids of carrot pomace in TPP-chitosomes by using a Central Composite Design 23 and response surface methodology. The independent variables were the phospholipid (0.8-4.2 mg/mL), chitosan (2.6-9.4 mg/mL), and carrot pomace (4-14 g/100 mL of ethanol) concentrations; the responses were the encapsulation efficiency in TPP-chitosomes (EE) of phenolics, a-carotene, and b-carotene and the particle size and zeta potential of the particles. The zeta potential ranged from +17 to +37 mV, indicating that the liposomes were coated with chitosan and that the particle sizes were in the nanometric to submicrometric scale. The optimized condition for encapsulating carotenoids was 2.5 mg/mL phospholipids, 6.0 mg/mL chitosan, and 12 g of carrot pomace/100 mL of ethanol. In this condition, the EE of phenolics and α- and ß-carotene was 95%, 98%, and 99%, respectively. Therefore, TPP-chitosomes containing encapsulated phenolics and carotenoids, which can be obtained from agro-industrial by-products, have potential application as natural pigments in food or cosmetics. TPP-chitosomes can also be used to encapsulate other types of natural pigments.
RESUMO
Vitamin D3(cholecalciferol)plays a crucial role in various physiological processes. However, vitamin D3 deficiency is a major public health problem affecting millions of people. Therefore, it is important to develop effective strategies that ensure the protection and stability of this important vitamin for food supplementation and fortification. This work aimed to impregnate intact and plasmolyzedSaccharomyces pastorianus brewer's yeast biomass with cholecalciferol using a biosorption process followed by spray drying to characterize the obtained material in terms of morphology, average particle size, zeta potential, moisture, water activity, FT-IR, and the stability of the encapsulated vitamin during the drying and storage process. Plasmolysis proved to be an effective method for improving the biosorption efficiency, retention during spray drying, and stability of vitamin D3. In addition, this process promoted an increase in cell size, which favored the dispersion stability of the system, as evidenced by the zeta potential values. These results contribute to the understanding of a new method for delivering this vitamin that conforms to environmentally conscious practices.
Assuntos
Biomassa , Colecalciferol , Tamanho da Partícula , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Secagem por Atomização , Dessecação/métodosRESUMO
Biopolymer-based films can be activated by the incorporation of active compounds into their matrix. Plant extracts are rich in phenolic compounds, which have antimicrobial and/or antioxidant properties. The aim of this study was to produce gelatin-based active films and nanocomposite films incorporated with "pitanga" (Eugenia uniflora L.) leaf extract (PLE) and/or crystalline nanocellulose extracted from soybean straw (CN), and to study the physicochemical, functional, microstructural, thermal, UV/Vis light barrier, and antioxidant properties of these materials. PLE enhanced some film properties, such as tensile strength (from 30.2 MPa to 40.6 MPa), elastic modulus (from 9.3 MPa to 11.3 MPa), the UV/Vis light barrier, and antioxidant activity, in addition to affecting the microstructural, surface, and color properties. These improvements were even more significant in nanocomposites simultaneously containing PLE and CN (59.5 MPa for tensile strength and 15.1 MPa for elastic modulus), and these composites also had lower moisture content (12.2% compared to 13.5-14.4% for other treatments) and solubility in water (from 48.9% to 44.1%). These improvements may be the result of interactions that occur between PLE's polyphenols and gelatin, mainly in the presence of CN, probably due to the formation of a stable PLE-CN-gelatin complex. These results are relevant for the food packaging sector, as the activated nanocomposite films exhibited enhanced active, barrier, and mechanical properties due to the presence of PLE and CN, in addition to being entirely produced with sustainable components from natural and renewable sources.
RESUMO
A considerable number of grape pomaces are generated annually. It represents a rich source of bioactive compounds, such as phenolic compounds and anthocyanins. Pressurized liquid extraction (PLE) has emerged as a green technology for recovering bioactive compounds from vegetal matrixes. In our study, PLE parameters (temperature, number of cycles, and rinse volume) have been studied to produce grape pomace extracts with high bioactive content using an experimental design. The experimental data obtained were adjusted to linear and quadratic models. The first-order model was better in predicting anthocyanins contents (TA, R2 = 0.94), whereas the second-order model was predictive for total phenolic compounds (TPC, R2 = 0.96). The main process parameter for the recovery of bioactive compounds was temperature, and the results showed opposing behaviors concerning TPC and TA, as it is difficult to optimize conditions for both. The extract containing the higher concentration of TPC (97.4 ± 1.1 mg GAE/g, d.b.) was encapsulated by spray-drying using maltodextrin as wall material. Particles presented with a spherical shape (~7.73 ± 0.95 µm) with a recovery yield of 79%. The results demonstrated that extraction followed by encapsulation of grape pomace extract is a good strategy to simplify future applications, whether for food, cosmetics or pharmaceutical fields.
RESUMO
Strontium acetate is applied for dental hypersensitivity treatment; however, the use of strontium carbonates for this purpose has not been described. The use of Sr-carbonate nanoparticles takes advantage of both the benefits of strontium on dentin mineralization and the abrasive properties of carbonates. Here in, we aimed to synthesize strontium carbonate and strontium-substituted calcium carbonate nanoparticles and test them as potential compounds in active dentifrices for treating dental hypersensitivity. For this, SrCO3, Sr0.5Ca0.5CO3, and CaCO3 nanoparticles were precipitated using Na2CO3, SrCl2, and/or CaCl2 as precursors. Their morphology and crystallinity were evaluated by electron microscopy (SEM) and X-ray diffraction, respectively. The nanoparticles were added to a poly (vinyl alcohol) gel and used to brush dentin surfaces isolated from human third molars. Dentin chemical composition before and after brushing was investigated by infrared spectroscopy (FTIR) and X-ray dispersive energy spectroscopy. Dentin tubule morphology, obliteration, and resistance of the coatings to acid attack were investigated by SEM and EDS. The cytotoxicity and ability of the particles to trigger the mineralization of hDPSCs in vitro were studied. Dentin brushed with the nanoparticles was coated by a mineral layer that was also able to penetrate the tubules, while CaCO3 remained as individual particles on the surface. FTIR bands related to carbonate groups were intensified after brushing with either SrCO3 or Sr0.5Ca0.5CO3. The shift of the phosphate-related FTIR band to a lower wavenumber indicated that strontium replaced calcium on the dentin structure after treatment. The coating promoted by SrCO3 or Sr0.5Ca0.5CO3 resisted the acid attack, while calcium and phosphorus were removed from the top of the dentin surface. The nanoparticles were not toxic to hDPSCs and elicited mineralization of the cells, as revealed by increased mineral nodule formation and enhanced expression of COL1, ALP, and RUNX2. Adding Sr0.5Ca0.5CO3 as an active ingredient in dentifrices formulations may be commercially advantageous since this compound combines the well-known abrasive properties of calcium carbonate with the mineralization ability of strontium, while the final cost remains between the cost of CaCO3 and SrCO3. The novel Sr0.5Ca0.5CO3 nanoparticles might emerge as an alternative for the treatment of dental hypersensitivity.
RESUMO
Brewer's spent yeast (BSY) Saccharomyces cerevisiae has been explored as a bio-vehicle for the encapsulation of bioactive compounds and as a delivery system. The main objectives of this work were to encapsulate carotenoids from pumpkin peel extract using BSY as an encapsulating agent and to evaluate the influence of ultrasound treatment on the carotenoid incorporation, stability and release. The powders produced by atomization of the suspension of BSY in the extract from pumpkin peels showed physical and microbiological stability during storage, presenting low values of water activity (<0.406), moisture content (<7.0%) and hygroscopicity (<6.8 g per 100 g), characteristics of greatest importance for powder formulations. Regarding the chemical stability of the incorporated carotenoids, there was a decline in carotenoid content in the first 30 days (p ≤ 0.01), although stabilization was achieved up to the 75th day. The best retention of carotenoids (273.3 µg g-1 of particles) was obtained by applying ultrasound treatment before atomization, which probably led to the adsorption of carotenoids onto yeasts. Ultrasound also showed a positive effect on the color protection of powders during storage and on the protection of compounds under simulated gastrointestinal digestion. BSY released the carotenoids gradually during the digestion and higher carotenoid release occurred in the intestinal phase with bioaccessibility values of 26.9 and 30.3%. Yeasts are a suitable carrier material and show promising characteristics for technological application.
Assuntos
Cucurbita , Carotenoides/metabolismo , Cucurbita/química , Extratos Vegetais/química , Pós/metabolismo , Saccharomyces cerevisiae/metabolismo , Água/metabolismoRESUMO
The objectives of this study were to extract bioactive compounds from carrot by-products and evaluate their chemical stability after encapsulation in liposomes (L) coated either with chitosan (Ch) or using sodium tripolyphosphate for chitosan complexation (TPP-Ch). The main compounds quantified in this study were carotenoids and total phenolic compounds, which reached encapsulation efficiencies higher than 75%. The TPP-Ch charged with carrot extract showed greater particle size (90.5 nm) and zeta potential (+22 mV) than vesicles without coating (68.0 nm and -2 mV, respectively), indicating that liposomes were successfully coated with chitosan. Regarding results of the carotenoid's encapsulated stability, TPP-Ch particles were more efficient preventing their degradation in all the experimental conditions studied (40 and 70 °C). It is significant that loaded TPP-Ch particles demonstrated similar results for the stability of carotenoid-rich extracts in ethanol, which would therefore be suitable for application in food industry or any aqueous matrices.
Assuntos
Quitosana , Daucus carota , Carotenoides , Quitosana/química , Daucus carota/química , Lipossomos/química , Tamanho da PartículaRESUMO
Although Saccharomyces cerevisiae has shown potential utilization as a bio-vehicle for encapsulation, there are no reports about the functionality of natural colorants encapsulated using yeast cells. The main objectives of this study were to produce natural food coloring by encapsulating extracts from grape pomace (GP) and jabuticaba byproducts (JB) in brewery waste yeast and evaluate the functionality of the pigments by their incorporation into yogurts. Particles produced by the encapsulation of extracts from GP and JB in S. cerevisiae using 5% of yeast had the highest encapsulation efficiencies for both anthocyanins (11.1 and 47.3%) and phenolic compounds (67.5 and 63.6%), the highest concentration of both bioactives during storage and stable luminosity. Yogurts showed a pseudoplastic behavior and were considered weak gels. Colored yogurts had acceptance indexes between 73.9 and 81.4%. This work evidenced the utilization of enriched yeasts as coloring agents and interesting additives for the production of functional foods.
Assuntos
Cápsulas , Corantes de Alimentos , Saccharomyces cerevisiae , Iogurte , Composição de Medicamentos , Alimento Funcional , Humanos , Secagem por AtomizaçãoRESUMO
This research approaches the utilization of brewery waste yeast Saccharomyces cerevisiae as a vehicle for the encapsulation and protection of phenolic compounds from Cabernet Sauvignon and Bordeaux grape pomace extracts. The main purpose of this research was to enrich the biomass of yeast to investigate its potential as a novel vehicle for further application as pigment or functional ingredient. The obtained powders presented characteristics appropriated for storage, such as low water activity (<0.289), hygroscopicity (<13.71 g/100 g) and moisture (<7.10%) and particle sizes lower than the sensory perceptible (<11.45 µm). This work proved that yeasts were loaded after spray-drying, thus, they might be considered as biocapsules. Furthermore, the bioaccessibility of encapsulated phenolic compounds from Bordeaux and Cabernet Sauvignon extracts was 34.96% and 14.25% higher compared to their respective free extracts, proving that yeasts are not only biocapsules of easy application, but also a biological material capable of protecting and delivering the compounds during gastrointestinal digestion.