RESUMO
The Salmonella enterica PhoP/PhoQ two-component signaling system coordinates the spatiotemporal expression of key virulence factors that confer pathogenic traits. Through biochemical and structural analyses, we found that the sensor histidine kinase PhoQ acted as a receptor for long-chain unsaturated fatty acids (LCUFAs), which induced a conformational change in the periplasmic domain of the PhoQ protein. This resulted in the repression of PhoQ autokinase activity, leading to inhibition of the expression of PhoP/PhoQ-dependent genes. Recognition of the LCUFA linoleic acid (LA) by PhoQ was not stereospecific because positional and geometrical isomers of LA equally inhibited PhoQ autophosphorylation, which was conserved in multiple S. enterica serovars. Because orally acquired Salmonella encounters conjugated LA (CLA), a product of the metabolic conversion of LA by microbiota, in the human intestine, we tested how short-term oral administration of CLA affected gut colonization and systemic dissemination in a mouse model of Salmonella-induced colitis. Compared to untreated mice, CLA-treated mice showed increased gut colonization by wild-type Salmonella, as well as increased dissemination to the spleen. In contrast, the inability of the phoP strain to disseminate systemically remained unchanged by CLA treatment. Together, our results reveal that, by inhibiting PhoQ, environmental LCUFAs fine-tune the fate of Salmonella during infection. These findings may aid in the design of new anti-Salmonella therapies.
Assuntos
Proteínas de Bactérias/metabolismo , Histidina Quinase/metabolismo , Ácido Linoleico/metabolismo , Infecções por Salmonella/metabolismo , Salmonella typhimurium/metabolismo , Transdução de Sinais , Animais , Proteínas de Bactérias/genética , Feminino , Histidina Quinase/genética , Ácido Linoleico/genética , Camundongos , Fosforilação , Infecções por Salmonella/genética , Salmonella typhimurium/genética , Salmonella typhimurium/patogenicidadeRESUMO
Salmonella enterica serovar Dublin is adapted to cattle but is able to infect humans with high invasiveness. An acute inflammatory response at the intestine helps to prevent Salmonella dissemination to systemic sites. Flagella contribute to this response by providing motility and FliC-mediated signaling through pattern recognition receptors. In a previous work, we reported a high frequency (11 out of 25) of S Dublin isolates lacking flagella in a collection obtained from humans and cattle. The aflagellate strains were impaired in their proinflammatory properties in vitro and in vivo The aim of this work was to elucidate the underlying cause of the absence of flagella in S Dublin isolates. We report here that class 3 flagellar genes are repressed in the human aflagellate isolates, due to impaired secretion of FliA anti-sigma factor FlgM. This phenotype is due to an in-frame 42-nucleotide deletion in the fliE gene, which codes for a protein located in the flagellar basal body. The deletion is predicted to produce a protein lacking amino acids 18 to 31. The aflagellate phenotype was highly stable; revertants were obtained only when fliA was artificially overexpressed combined with several successive passages in motility agar. DNA sequence analysis revealed that motile revertants resulted from duplications of DNA sequences in fliE adjacent to the deleted region. These duplications produced a FliE protein of similar length to the wild type and demonstrate that amino acids 18 to 31 of FliE are not essential. The same deletion was detected in S Dublin isolates obtained from cattle, indicating that this mutation circulates in nature.