Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bull Entomol Res ; 104(4): 486-93, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24824066

RESUMO

Understanding the biology of the housefly (Musca domestica L.) is crucial for the development of mass-rearing protocols in order to use this insect as a degradation agent for livestock waste. In this study, the biological and genetic differences between different laboratory strains of M. domestica were analysed. Additionally, hybrids were obtained by mixing the strains and their biological parameters were also measured. The three strains of M. domestica presented differences in their biological and morphological parameters, the main differences were: size, egg production and developmental time. The strain A (specimens from Central Europe) had the best qualities to be used in mass-rearing conditions: it produced the largest quantities of eggs (5.77±0.38 eggs per female per day), the individuals were larger (12.62±0.22 mg) and its developmental time was shorter (15.22±0.21 days). However, the strain C (specimens from SW Europe) produced the fewest eggs (3.15±0.42 eggs per female per day) and needed 18.16±0.49 days to develop from larva to adult, whilst the females from strain B (from South America) produced 4.25±0.47 eggs per day and needed 17.11±0.36 days to complete its development. Genetic analysis of the original laboratory strains showed four different mtDNA cytochrome c oxidase subunit I haplotypes. Statistical parsimony network analysis showed that the SW Europe and South-American strains shared haplotypes, whereas the Central Europe strain did not. Upon hybridizing the strains, variations in egg production and in developmental time were observed in between hybrids and pure strains, and when mixing Central European and South-American strains only males were obtained.


Assuntos
Criação de Animais Domésticos/métodos , Animais de Laboratório/crescimento & desenvolvimento , Cruzamento/métodos , Moscas Domésticas/crescimento & desenvolvimento , Análise de Variância , Animais , Animais de Laboratório/genética , Biodegradação Ambiental , Complexo IV da Cadeia de Transporte de Elétrons/genética , Feminino , Haplótipos/genética , Moscas Domésticas/genética , Hibridização Genética/genética , Masculino , Esterco , Filogenia , Eslováquia , Espanha , Estatísticas não Paramétricas , Venezuela , Asas de Animais/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA